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A B S T R A C T

Simulating dendritic growth with natural convection is challenging because of the size of the computational
domain required when compared to the dendrite scale. In this study, a phase-field-lattice Boltzmann model was
used to simulate dendritic growth in the presence of natural convection due to a difference in solute
concentration. To facilitate and accelerate the large-scale simulation, a parallel computing code with multiple
graphics processing units was developed. The effects of the computational domain size as well as those of gravity
on the dendritic morphologies were examined by performing two-dimensional free dendritic growth simulations
with natural convection. The effects of the gravity direction on the dendrite spacing and morphology were also
investigated by simulating unidirectional solidification from multiple seeds.

1. Introduction

Solidification is a complicated multi-physics phenomenon that
includes the migration of the solid-liquid interface, thermal and solute
diffusions, and the flowing of the melt [1]. In particular, the melt flow
drastically changes the solidification microstructures [2–4]. Recently,
Shevchenko et al. performed a series of in-situ observations during the
directional solidification of an In–Ga alloy [5–11] and uncovered
interesting phenomena, such as plume flow; unusual overgrowth where
the largely inclined dendrites overgrew the dendrites oriented favorably
with respect to the heat flow direction; and freckle formations, which
were caused by the natural convection initiated by the difference in the
densities between In and Ga. The freckle, or channel-type segregation,
is a typical solidification defect [12–14]. A few numerical studies have
been performed on the solidification of pure metals and alloys
accompanying natural convection, in order to determine the freckle
formation mechanism and criteria [14–19]. However, these simula-
tions focused on macrosegregation, and the effects of the microstruc-
tures were introduced by means of empirical parameters, such as the
mushy zone permeability and the dendritic spacing during directional
solidification. Recently, Saad et al. [20] developed a channel-segrega-

tion prediction model at the grain scale by coupling the cellular
automaton and finite element methods [21,22]. The simulated solidi-
fication morphologies were found to be in good agreement with the in-
situ observations of the In–Ga alloy solidification process [7].
Karagadde [23], Yuan [24,25], and Kao [26] simulated dendritic
growth with natural convection at the dendrite scale using a cellular
automaton technique. They could observe the interaction between
dendritic growth and melt flow in the mushy zone and succeeded in
elucidating freckle formation. However, the accuracy of the dendritic
morphology was insufficient.

The phase-field method is a numerical model that can simulate
dendritic growth with high accuracy [27–30]. The phase-field method
has been applied successfully to study dendritic growth with melt
convection [31,32]. While a number of phase-field studies have focused
on forced convection [31,33–46], there have been few studies on
dendritic growth with natural convection [47–50]. To the best of our
knowledge, only Apel [47] and Steinbach [50] have investigated the
growth of multiple dendrites with natural convection. The reason for
this lack of phase-field studies on dendritic growth with natural
convection is that solidification simulations involving natural convec-
tion require a much larger computational domain compared to the
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dendrite scale. Therefore, the key is to develop a large-scale phase-field
simulation technology for high-accuracy predictions of material micro-
structures. General-purpose computing on graphics processing units
(GPGPU) has emerged as a promising large-scale simulation trend in
computational materials science [29,51–64]. We have been able to
successfully perform parallel GPU-based large-scale phase-field simu-
lations using the GPU-rich supercomputer TSUBAME2.5 at the Tokyo
Institute of Technology [29,52,54–58,63,64].

In this study, to allow for an accurate and large-scale simulation of
dendritic growth in the presence of natural convection, we develop a
parallel GPU code for a model that combines the phase-field and lattice
Boltzmann methods. The effects of the computational domain size and
gravity on the dendrite morphology are investigated in detail. Here, as
a first step toward studying dendritic growth with natural convection,
we focus on the large-scale simulations of the two-dimensional
isothermal solidification of a binary alloy.

2. Phase-field-lattice Boltzmann model

Recently, we developed a phase-field-lattice Boltzmann model that
can simultaneously simulate dendritic growth, dendritic motion, and
melt convection during the isothermal solidification of a binary alloy
[51,65]. In this model, the dendritic growth, melt flow, and dendritic
motion are simulated by the quantitative phase-field model [66], the
lattice Boltzmann method [67], and using the equations of motion,
respectively. In this study, the model is applied to dendritic growth
with natural convection. For simplicity, the problem is restricted to
two-dimensional isothermal solidification without the motion of the
dendrite. The phase-field method is the most accurate numerical model
for simulating dendrite growth and is easily discretized by the normal
finite difference method. It is easier to implement the lattice Boltzmann
model than it is to directly solve the Navier-Stokes equations. Further,
the method is suitable for parallel computations. That is to say, a
coupling model based on the phase-field and lattice Boltzmann
methods is suitable for high-accuracy large-scale parallel computa-
tions.

2.1. Quantitative phase-field model

The isothermal solidification of a dilute binary alloy can be
simulated by the quantitative phase-field model developed by Ohno
and Matsuura [66]. In this model, we use two variables: the phase-field,
ϕ, and the non-dimensional supersaturation, u. The phase-field is
defined as ϕ =+1 in the solid and ϕ =−1 in the liquid and changes
smoothly within the solid–liquid interface region. The non-dimen-
sional supersaturation is defined by u =(Cl – Cl

e)/(Cl
e -Cs

e), where Cl
is the concentration in the liquid, and Cl

e and Cs
e are the equilibrium

concentrations in the liquid and solid, respectively. We employ the
relation k=Cs

e/Cl
e=Cs/Cl by following the Kim–Kim–Suzuki (KKS)

model [68], where k is the partition coefficient. Then, the concentra-
tion, C, is given as C=Cs (1+ϕ)/2+Cl (1-ϕ)/2. The time evolution
equations of ϕ and u can be expressed as follows:
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In Eq. (1), we take into account the two-dimensional crystalline
anisotropy of the interface energy and the phase-field kinetics by
expressing the phase-field relaxation time, τ, and the interface thick-

ness, W, as τ(θ)=τ0as(θ)
2 and W(θ)=W0as(θ), respectively, where τ0

and W0 are the standard values of τ and W. We employ as(θ)
=1+ε4cos(4θ) as the anisotropy function with four-fold anisotropy,
where θ is the angle between the x-axis and the interface normal and ε4
is the anisotropy strength. Then λ* is a coupling constant associated
with the thermodynamic driving force, which is expressed as λ*=a1W0/
d0, where a1 is a constant and d0 is the chemical capillary length
defined by d0=Γ/(|m|(1-k)cl

e), with Γ the Gibbs–Thomson constant
and m the liquidus slope. The standard relaxation time, τ0, is expressed
by τ0=a2λ

*W0
2/Dl, where a2 is a constant and Dl is the diffusion

coefficient in the liquid. The constants a1 and a2 are determined when
choosing the functions f(ϕ) and g(ϕ); here, we use a1=0.8839 and
a2=0.6267 for df(ϕ)/dϕ =-ϕ+ϕ3 and dg(ϕ)/dϕ =(1- ϕ2)2[69]. In Eq. (2),
JAT is an antitrapping current expressed as JAT =-(1-kDs/Dl)/(2 2 )
W0[1+(1-k)u](∂ϕ/∂t)∇ϕ/|∇ϕ| using the diffusion coefficients in the
solid, Ds, and the liquid, Dl. In addition, J is the fluctuating current
[70] and q(ϕ) is an interpolation function expressed as q(ϕ)
=[kDs+Dl+(kDs–Dl)ϕ]/(2Dl). An advection term is added to the
original diffusion equation [66], in order to express the solute flow
driven by the fluid velocity, U, as determined by the lattice Boltzmann
method.

2.2. Lattice Boltzmann model

The fluid velocity is computed by the lattice Boltzmann method
[67]. The advantage of employing the lattice Boltzmann method is its
suitability for parallel computation because there is no need to solve
the Poisson's equation in the Navier–Stokes equations. The lattice
Boltzmann equation while considering the discrete force Gi can be
expressed as
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where fi is the particle velocity distribution function in the i-th discrete
direction, fi

eq is the equilibrium distribution function, τLBM is the
single relaxation time, ci is the discrete particle velocity, x is the
position vector, t is the time, δt is the time step size, and Gi is the
discrete external force. The equilibrium distribution function, fi

eq, is
expressed as
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wherewi is the weight function and c is the lattice velocity. The discrete
external force, Gi, is given by
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where GD is the dissipative drag force vector to satisfy the no-slip
boundary condition at the solid–liquid interface [31]:
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Here, ν is the kinematic viscosity and h is a constant and equal to 2.757
[31]. The buoyancy force due to the concentration difference in the
liquid is given by

t ρ β C C ϕG x g( , ) = − ( − ) 1
2

(1 − ),B C 0 (7)

where g is the gravity acceleration vector, βC is the solute expansion
factor, and C0 is the initial liquid concentration. The introduction of Eq.
(7) is a novel point with respect to the previous model [65]. The
density, ρ, and fluid velocity, U, are computed using
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