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A B S T R A C T

Melt flow drastically changes dendrite morphology during the solidification of pure metals and alloys.
Numerical simulation of dendrite growth in the presence of the melt flow is crucial for the accurate prediction
and control of the solidification microstructure. However, accurate simulations are difficult because of the large
computational costs required. In this study, we develop a parallel computational scheme using multiple graphics
processing units (GPUs) for a very large-scale three-dimensional phase-field-lattice Boltzmann simulation. In
the model, a quantitative phase field model, which can accurately simulate the dendrite growth of a dilute binary
alloy, and a lattice Boltzmann model to simulate the melt flow are coupled to simulate the dendrite growth in the
melt flow. By performing very large-scale simulations using the developed scheme, we demonstrate the
applicability of multi-GPUs parallel computation to the systematical large-scale-simulations of dendrite growth
with the melt flow.

1. Introduction

Dendrites are typical morphological structures in the solidification
of pure metals and alloys. Dendrite solidification structures are largely
affected by the melt convection [1–3]. Owing to the recent development
of in situ X-ray imaging techniques, many solidification phenomena
caused by or affected by the melt flow, such as dendrite fragmentation
[4,5] and freckle formation [6,7], have been revealed. However, for a
deep understanding of such multi-physics problems, it is important to
investigate the phenomena by means of not only in situ X-ray
observations but also computer simulations that can simulate dendrite
growth in the melt flow. In addition, the in situ observations are
currently performed for thin samples. Therefore, it is especially
important to develop a numerical scheme for predicting the solidifica-
tion conditions in three-dimensional (3D) bulk crystals.

The cellular automaton (CA) method has been widely used to
simulate dendrite growth in melt flows such as forced convection [8,9]
and natural convection [10,11] flows. Recently, very-large-scale simu-
lations have been reported by coupling CA with the lattice Boltzmann
method (LBM) [12,13]. The CA method is a powerful tool for

simulating the interaction of multiple dendrites in a relatively wide
computational domain. However, the accuracy required to express
dendrite morphology is sacrificed in CA simulations for multiple
dendrites. The phase-field (PF) method has recently emerged as a
powerful numerical model for expressing dendrite morphology with
high accuracy [14–16]. The PF method has also been applied to
dendrite growth problems under melt flow [17,18]. However, most of
the PF simulations reported so far have focused on two-dimensional
(2D) domains [19–29], and 3D PF simulations have only been carried
out in only a few studies [30–32]. In 3D PF simulations of dendrite
growth under melt flow, the adaptive mesh refinement (AMR) scheme
was employed. The AMR scheme is a very powerful scheme used for
reducing the computational cost in PF simulations. This is because the
PF simulation requires fine meshes only around the interface region
[33–36]. However, the programing of AMR is generally complicated,
and its computational efficiency becomes poor when the volume
fraction of the interface is large [37].

Recently, graphics processing units (GPUs) have been used for
general-purpose computations, i.e., GPGPU. The GPGPU has made
acceleration of the computation of a wide variety of applications
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possible, including problems in computational materials science [38–
45]. We have developed a parallel GPU computation to accelerate a
very-large-scale phase-field simulation of the directional solidification
of a binary alloy and showed that parallel GPU computation is well
suited for phase-field simulations [46–48]. In particular, we have
successfully achieved a very-large-scale 3D phase-field simulation of
the directional solidification of a binary alloy polycrystal in a system
with dimensions of 3.072×3.078×3.072 mm3 (4096×4104×4096
meshes) for a total simulation time of more than 100 s (4 million
computational steps) using 768 GPUs on the supercomputer
TSUBAME2.0 [47]. It is the largest simulation of dendrite growth
currently reported, to the best of our knowledge. We have also applied
a quantitative phase-field model [49] to the parallel GPU computation
and investigated the competitive dendrite growth during directional
solidification [50–53].

In this study, we develop a parallel GPU computational scheme,
which systematically and efficiently enables large-scale simulations of
dendrite growth under the melt flow by coupling PF and LBM by
utilizing the state-of-art technique of parallel GPU computation. First,
we extend the 2D phase-field-lattice Boltzmann model (PFLBM)
[54,55] to the 3D case for simulating dendrite growth in the presence
of melt flow, and then we develop parallel GPU code to accelerate the
large-scale 3D PFLBM simulation. Finally, large-scale simulations of
dendrite growth in forced convection are performed using
TSUBAME2.5, the GPU-rich supercomputer at the Tokyo Institute of
Technology.

2. Phase-field-lattice Boltzmann model

In this work, the phase-field-lattice Boltzmann model (PFLBM)
developed by Rojas et al. [54] is extended to the 3D case. In PFLBM,
the quantitative phase-field model for the dendrite growth of a dilute
binary alloy [49] and the lattice Boltzmann model for the melt flow [56]
are coupled. Here, the translational and rotational motion of the
dendrite is ignored for the sake of simplicity; however, the PFLBM
developed by Rojas et al. [54] can describe the motion of the dendrite.
The phase-field method is the only way to simulate the dendrite growth
accurately [57], and our quantitative model can provide the correct
results independently on the interface thickness. The lattice Boltzmann
model is easy to implement and is also easy to be parallelized
comparing to directly solving the Navier-Stokes equations. Namely,
the PFLBM is very powerful for the high accurate parallel GPU
simulation of dendrite growth with melt flow.

2.1. Quantitative phase-field model for dilute binary alloy
solidification

The phase-field ϕ is defined as ϕ =+1 in solid and ϕ =−1 in liquid.
In dimensionless time and distance normalized by relaxation time τ0
and the interface thickness parameter W0, respectively, the evolution
equation of ϕ is expressed by
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Here, as is an interface anisotropy function given by
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where ζ is the strength of anisotropy and x y z( , , )∼∼ ∼ is a material
coordinate system that corresponds to the 〈100〉 direction. The
differentiation of ϕ with respect to x y z( , , )∼∼ ∼ , ϕ∇∼ , is obtained by the
following coordinate transformation using the Euler angles (φ, θ, ψ) in

rotation sequence x-y-x:
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Here, we rotate first about the x-axis by an angle φ, then the y-axis
by an angle θ, and finally the x-axis by an angle ψ. In Eq. (1), f′(ϕ )=−ϕ
+ϕ 3 and g′(ϕ )=(1−ϕ )2 are the first derivative functions of the double-
well potential and the interpolating function of chemical free energy of
each phase, respectively. The dimensionless concentration u is defined
by
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where Cl is the solute concentration in liquid, and Cl
e and Cs

e are the
equilibrium solute concentrations in liquid and solid, respectively. By
following the Kim–Kim–Suzuki (KKS) model [58], we use the relations
k=Cs/Cl =Cs

e/Cl
e and C =ϕCs+(1-ϕ)Cl, where k is the partition

coefficient and C is the solute concentration. Moreover, λ*=a1W0/d0
is a constant related to the thermodynamical driving force, where
a1=0.88388 [16] and d0 is the chemical capillary length defined by
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where Γ is the Gibbs-Thomson coefficient and m is the liquidus slope.
The time evolution of the dimensionless solute concentration u is

expressed by
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where U is the melt flow velocity, and Dl and Ds are the diffusivities in
the liquid and solid, respectively. Besides, jAT is the anti-trapping
current expressed by
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where q(ϕ )=(kDs+Dl+(kDs–Dl)ϕ )/2Dl is the interpolating function.
To initiate higher-order branching in the dendrite, J∇⋅ is introduced as
a noise term [59]. The relaxation time τ0 is expressed as τ0=a2λ*W0

2/
Dl with a2=0.6267 [16]. Eqs. (1) and (6) are discretized by the finite
difference method. The time differentiations are discretized by the first-
order forward difference method. Isotropic discretization [60] using
the nearest and next-to-nearest neighbor grid points and the second-
order central difference approximation are used for the Laplace
operator of Eq. (1) and Eq. (7), respectively. For the computation of
the advection term in Eq. (6), the weighted essentially non-oscillatory
(WENO) fifth-order scheme is used.

2.2. Lattice Boltzmann model

In the following formulation of the lattice Boltzmann equation, we
use dimensionless time and distance normalized by the time increment
Δt and the lattice size Δx, respectively. The lattice Boltzmann equation
that considers an external force term is expressed by
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