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A B S T R A C T

The present paper investigates the effect of the oscillatory flow induced by vibration on nucleation and grain
growth in the undercooled melt in terms of the analytical method. The analytical solution shows that the
oscillatory flow stimulates the meta-stable crystalline embryos to grow rapidly and facilitates to form a great
number of nuclei in the undercooled melt during the initial stage of nucleation. As a grain grows, the oscillatory
flow alternately facilitates and inhibits the growth of the grain such that the formed nuclei survive. For the low
frequency and low acceleration, the interface temperature of a grain rises rapidly immediately after nucleation
and then gradually decreases. For the high frequency, the interface temperature shows no significant difference
with the increase of frequency. For the high acceleration, the interface temperature oscillates with the oscillatory
flow. The oscillation acts as a stimulating and inhibitory effect and facilitates to produce a number of crystalline
sites in the undercooled melt. The grains are refined with increasing vibration acceleration under a certain
vibration frequency.

1. Introduction

Melt convection influences nucleation and subsequent grain growth
during solidification, and determines to great extent interfacial
morphologies and microstructures. Thermo-soluto capillary effects,
buoyancy, density change upon phase transition induce natural con-
vection in the melt, frequently leading to spatial and time-dependent
non-uniform interfacial morphologies. Convection in the melt can be
induced by external forcing means to gain better control over the
interfacial morphologies, among which vibration is an effective way for
inducing convection in the melt. There have been a number of
experiments and simulations that indicate the effect of melt convection
induced by vibration on nucleation and interfacial morphologies during
solidification [1–7]. Sugiura et al. [8] investigated the refining mechan-
ism of Sn-10mass%Pb alloy imposed in an electromagnetic vibration
and confirmed that the electromagnetic vibration can induce the
oscillatory flow in the melt, and the intense electromagnetic vibration
induces nucleation in the melt and the refinement of solidified
microstructures occurs in the initial stage of solidification. Mizutani
et al. [9] and Zhang et al. [10] observed respectively the grain
refinement effect under vibrations with various vibration frequency
and acceleration and found that grain size decreases as vibration
intensity increases. Lan et al. [11,12] performed the numerical

simulations and revealed the effects of angular vibration on the flow,
segregation and interface morphology in vertical Bridgman crystal
growth. These experiments and simulations have gained deep insight
into grain refinement during solidification, however, further theoretical
investigation is still required to understand the mechanism of grain
refinement. This paper aims to study the effect of oscillatory flow
induced by vibration on nucleation and grain growth in the initial stage
of solidification. By the matched asymptotic method and multiple-
variable expansion method [13,14] we find the asymptotic solution for
the temperature field and grain growth and explore the mechanism of
grain refinement in the convective undercooled melt.

2. Model formulation

During solidification, nucleation occurs in the initial stage of
transformation. As the liquid temperature decreases in the undercooled
melt, the crystallite embryo of the solid phase from the meta-stable
liquid phase occurs. The crystallite embryos are small transient clusters
of the forming solid phase, dispersed in the liquid phase. The crystallite
embryo may grow to enough size to form a nucleus or decay to vanish
in the melt, which depends on its ambient change of temperature.
Vibration exerted on the melt can induce the oscillatory flow in the
melt, resulting in the change of temperature [8]. As the temperature
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decreases below the liquidus, the crystallite embryo grows and
surpasses the critical nucleation radius and then a nucleus of the
forming solid phase occurs. As the temperature further decreases, the
nucleus continuously grows in size to form a grain. A large number of
nuclei in the melt occur and grow in size until all the liquid phase is
consumed. For the analytical analysis, we consider the formation of one
nucleus as a particle in the undercooled melt. According to Mullins and
Sekerka's view [15], the field that is several wavelengths away from the
particle is taken as the far field. It is assumed that the far field
temperature is T∞ (T T< ,M∞ TM is the melting temperature for the pure
substance) and an oscillatory flow far from the particle induced by melt
vibration is in the downward direction pointing to the particle. For
simplicity, the liquid phase and solid phase have equal densities and
equal specific heats, and the buoyancy effects are neglected. UL and P
denote the convective velocity and pressure in the liquid phase,
respectively. TL and TS denote the temperatures in the liquid phase
and solid phase, respectively. R R θ φ t= ( , , ) denotes the interface of the
particle in the spherical coordinate r θ φ( , , ) whose origin is set at the
center of the sphere. The interface of the particle separates the solid
phase r R θ φ t< ( , , ) from the liquid phase r R θ φ t> ( , , ). The nucleation
and grain growth in the undercooled melt are governed by the coupled
continuity, momentum equation and heat conduction equations:

U∇⋅ = 0,L (2.1)
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where ρL is the density in the liquid phase, υ is the kinematical
viscosity, κT and κS are respectively the thermal diffusivities in the
liquid and solid phases, which are subject to the following boundary
conditions.

At the interface, the total mass conservation condition and the
tangential non-slip condition hold,

ρ U ρ UU n U n U τ U τ( ⋅ − ) = ( ⋅ − ), ⋅ = ⋅ .L L I S S I L S

where ρS are the density in the solid phase, n and τ are the exterior unit
vectors normal and tangential to the interface, respectively. As the
convective velocity in the solid phase is assumed to be constant, U = 0S ,
the densities in the liquid and solid phases are equal, the total mass
conservation condition and the tangential non-slip condition are
expressed as

U n U τ⋅ = 0, ⋅ = 0.L L (2.5)

The interface conditions also include the thermal equilibrium
condition, the Gibbs-Thomson condition and energy conservation
condition:

T T= ,L S (2.6)
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where K is the local mean curvature at the interface, γ0 is the isotropic
surface energy, ΔTK is the kinetic undercooling which is necessary for
the attachment of atoms to the interface, ΔT μ U= (1/ )K I, μ is the
interfacial kinetics coefficient, UI is the normal growth velocity of the
interface, kL and kS the heat conduction coefficients in the liquid phase
and solid phase, respectively.

The far-field temperature condition is expressed as

T T as r→ → ∞.L ∞ (2.9)

The oscillatory flow induced by melt vibration is expressed as a
harmonic function of amplitude A and frequency Ω in the downward
direction pointing to the particle,

A Ωt as rU k→ − cos → ∞,L D (2.10)

where AD and Ω are the amplitude and frequency of the oscillatory flow,
respectively, A AΩ=D and k is the third unit vector of Cartesian
rectangular coordinates.

We choose the initial radius of the particle r0 as the length scale, the
characteristic velocity of the interface V k ΔT r ΔH= /( )L 0 as the velocity
scale, r V/0 as the time scale, ρ k V r/L L 0 as the pressure scale and
ΔH c ρ/( )pL L as the temperature scale, in which ΔH is the latent heat
per unit volume, cpL is the specific heat in the liquid phase. With the
transformation

V V
u v w P P

ρ k V r
U

U
= = 1 ( , , ), =

/
,L

L

L L 0

T
T T

ΔH c ρ
T

T T
ΔH c ρ

r r
r

t t
r V

=
−
/( )

, =
−
/( )

, = , =
/

,L
L M

pL L
S

S M

pL L 0 0 (2.11)

we transfer Eqs. (2.1)–(2.10) to the dimensionless equations. Further,
we introduce a slow variable ρ εr= , where ε is the relative under-
cooling parameter,
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=
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with ΔT T T= −M ∞ being the undercooling in the melt. When the
variables r θ φ, , and ρ are formally treated as the independent
variables,
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the continuity equation, momentum equation and heat conduction
equations in Eqs. (2.1)–(2.10) are expressed as the dimensionless
equations
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which are subject to the interface conditions:

U n U τ⋅ = 0, ⋅ = 0,L L (2.16)
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where u is the first component of u v wU = ( , , )L , Pr is the Prandtl
number,
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