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solidification conditions.

Diffusive instabilities of the Mullins-Sekerka type are one of the principal mechanisms through which
microstructures form during solidification. In this study, we perform a linear stability analysis for the
perturbation of a planar interface, where we derive analytical expressions to characterize the dispersion
behavior in multi-component alloys under directional and isothermal solidification conditions. Subsequently,
we confirm our calculations using phase-field simulations for different choices of the inter-diffusivity matrices.
Thereafter, we highlight the characteristics of the dispersion curves upon change of the diffusivity matrix and
the velocity. Finally, we also depict conditions for absolute stability of a planar interface under directional

1. Introduction

Morphological instability of a solid-liquid interface to small per-
turbations is the basis for the most commonly observed solidification
microstructure of dendrites. Experimentally, a planar solidification
front during solidification is usually perturbed, either by random
thermal fluctuations or due to interactions with insoluble impurities
[1]. An unstable solidification front is characterized by amplification of
such interfacial perturbations which ultimately develop into cellular or
dendritic structures. Any random infinitesimal perturbation can be
thought of as a linear combination of a multitude of wavelengths with
different amplitudes (which are small during early stages). Thus, the
stability of a solid-liquid interface to the amplification of these
perturbations can be understood by investigating the growth behavior
of the individual modes. Mullins and Sekerka in their classical work [2]
present a linear stability analysis of an interface perturbed by any
generic wavelength and provide expressions for their growth rates for a
binary alloy. This allows the determination of the maximally (fastest)
growing wavelength that can be approximately related to the length
scales in the cellular or dendritic microstructures. Cells and dendrites,
being the most commonly observed solidification structures, have been
investigated theoretically [3—10], experimentally [11-18], as well as
through simulations [19-24]. The theory in [2] (also confirmed by
phase-field simulations in [25]) reveals that the instability length scale
in a binary alloy is a function of the equilibrium compositions in the
solid and the liquid, the Gibbs-Thomson coefficient, the growth velocity
and the solute diffusivity.
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For multicomponent systems, a linear stability analysis of a
directionally solidifying ternary alloy is first reported by Coates et al.
[26]. The study assumed no diffusional interaction amongst solutes,
with the dispersion behavior (the amplification rates for different
wavelengths of perturbations) calculated assuming a steady state
behavior in the perturbed state. The correctness of this assumption is
investigated by Coriell et al. [27] by solving for the time dependent
problem which leads to the validation of the steady-state assumption in
[26]. The effect of coupled solute diffusivities on the stability of the
system to infinitesimal perturbations is studied by Hunziker [28].

In this paper, we have three principal aims. First we derive
analytical expressions for the growth rates of the perturbations as a
function of imposed wavelengths by performing a linear stability
analysis for directional as well as isothermal solidification conditions,
in a generic multi-component alloy. Here, while the problem of
directional solidification is well posed in that there exists a steady-
state condition (constant velocity) for the planar interface which is to
be perturbed, the problem of isothermal solidification has a planar
growth solution which only admits a relation where the displacement of
the interface scales with the square root of time. We show that an
equivalent perturbation analysis can be performed for both conditions,
notwithstanding this difference in the initial states which are being
perturbed. Secondly, we utilize a phase-field model based on a grand-
canonical density formulation and validate our analytical calculations
for both sets of solidification conditions by performing simulations for
a varied set of diffusivity matrices. Thirdly, we comment on the nature
of the dispersion curves in terms of the maximal growth rates and
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maximally growing wavelengths and their variation with the change in
the diffusion length scales. Here, we also highlight the conditions for
absolute stability which is applicable for directional solidification
conditions. We begin with the theoretical analysis of the growth of
perturbations and thereafter describe the phase-field model, followed
by the results.

2. Theory

In this section, we derive an analytical linear stability analysis of the
diffusive instability of a planar interface under two conditions. In the
first, a) the planar interface is driven in a temperature gradient of
defined magnitude (G) with a velocity (V) and secondly, b) for
solidification in a uniform undercooled melt. While in a) the velocity
of the interface is imposed, in b) the system chooses a growth
coefficient that linearly relates the square of the displacement of the
interface with time, depending upon the alloy composition and
diffusivity matrices.

2.1. Directional solidification

2.1.1. Steady state

We begin with steady-state (planar front) solidification of a K
component alloy. The K — 1 independent components have no diffu-
sional interaction (i.e., the diffusivity matrix is diagonal; the general
case is treated later) in the liquid, while there is no diffusion in the
solid. The governing equation in a frame attached to the interface
growing at a velocity V writes as,
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where ¢; denotes the concentration and D;; the diffusivity of the i’th
component in the liquid, with i =1, 2, 3,...,K — 1. z is the direction
normal to the solid-liquid interface (located at z=0). Consideration of
uncoupled diffusion of solutes enables us to present the following
discussion in terms of a generic component 7, which stands for all the
components in a system.

Eq. (1) has a solution whereby the solid grows with a composition
that is the same as the liquid composition. This can be easily obtained
by integrating the Eq. (1) twice and respectively applying the boundary
conditions at the interface,
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which is the Stefan boundary condition at a solid-liquid interface
moving with velocity V, with G, ; as the compositional gradient in c; at
the planar interface and k; as the equilibrium partition coefficient
corresponding to the selected tie-line; the other boundary condition
being that of the equilibrium compositions at the interface,

¢ = ci{gq, atz = 0. 3)

The resultant form of the equation (after the second integration)
admits a solution only when the far-field liquid composition is the
same as the solid composition. Thereby, the composition of the liquid
c[{eq as well as the temperature of the interface can be determined
uniquely, given the starting alloy composition (far-field liquid compo-

sition). This completes the solution to Eq. (1) as given by,
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2.1.2. Linear stability analysis
The steady-state solidification described above is now modified by
introducing a sinusoidal perturbation given by,
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with x being one of the directions parallel to the unperturbed interface
(normal to z). Despite § being a function of time (t), a stability criterion
derivable from the steady state solution will not differ appreciably from
that obtained by solving the time dependent problem [26,27] (quasi-
stationary approximation [6]), which leads to the following governing
differential equation describing a system with interfacial perturbations,
0% 9% ;i
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where the modified composition field of any generic component i,
under interfacial perturbation is denoted by ;. The form of the solution
to Eq. (6) is obtained by adding a term to the steady-state solution
given by Eq. (4), which represents a sinusoidal variation in the
composition fields in response to the interfacial perturbation of a
similar character. It must be taken into account that such an effect
diminishes in magnitude with distance from the interface, leading to
the following expression,
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where k' and E; are constants. The constant k" is determined by the
requirement that the composition profile given by Eq. (7) satisfies the
governing Eq. (6), resulting in a quadratic equation in k", which yields,
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The compositions in the liquid at the perturbed interface are no longer
given by the equilibrium tie-lines considered during steady-state
growth because of the Gibbs-Thomson correction. The composition
deviations conform to the interfacial curvature, which is approximated
by the second derivative of z with respect to x from Eq. (5) and can be
seen to be of the same form as the perturbation itself. Thus, the
composition in the liquid at the perturbed interface is given by,

Cip = €l yg + bi sinx, ©

where b; is a constant. Evaluating the solution to the perturbed
problem given by Eq. (7) at the perturbed interface (see Eq. (5)), we
retrieve,

Ciop R c,-{eq + (G0 + E;)sinwx, (10)

where we have retained terms proportional to the first order in the
perturbation, @. Separately comparing the Fourier coefficients and the
leading order constant from Egs. (9) and (10), we derive,
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Eq. (11) is only a reformulation of E; in terms of b;, which are still
unknown. The b;'s (b1, bo, ---, bx_1) are related to each other through
the fact that each of the composition fields (¢;) satisfies the Stefan
condition at the perturbed interface, moving at a velocity (v(x)). This
implies that the same amplification factor (§/6) must be obtained by
considering the diffusion field of any one of the components. The
expression for the Stefan condition at the perturbed interface is given
by,
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where § is dé/dt. The above equation can be re-expressed as,
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From Eq. (9),
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