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a b s t r a c t

The morphological stability of the planar interface of dilute alloys solidifying in a cylindrical mold is
analyzed based on the perturbation model presented by Mullins and Sekerka under the assumption that
the interface crosses the mold wall at right angles, to examine the effect of the inside diameter of the
mold. When the interface grows in a mold of a larger inside diameter, the stability-instability criterion of
the planar interface is coincident with the MS criterion. On the other hand, in a mold of a smaller dia-
meter, the rippled interface is permitted to take a frequency of discrete values (the permitted frequency),
and the planar interface grows stably under thermal conditions slightly exceeding the MS criterion. Also,
there exists a minimum permitted frequency ωmin, and the critical inside diameter dc is derived from
ωmin. When the alloy solidifies in a mold of an inside diameter less than dc, the interface grows stably
under thermal conditions in which the MS model predicts unstable growth of the interface. Moreover,
there is a lower limit dG in dc, and when the alloy solidifies in a mold of an inside diameter less than dG,
the interface grows stably even at a zero temperature gradient in the liquid.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Regarding the morphological stability of the solid–liquid in-
terface during the solidification of alloys, Tiller et al. [1] presented
a model in which the planar interface becomes unstable when a
constitutionally supercooled zone appears in the liquid in front of
the interface. Their model (the CS model) explained the fact that
the planar interface becomes unstable when the ratio of the
temperature gradient to the growth rate reached a critical value
proportional to the solute concentration. A decade later, Mullins
and Sekerka [2–5] presented a model in which instability of the
planar interface occurs when the amplitude of the rippled inter-
face begins to increase with time. Their model (the MS model) not
only presented the critical condition at the onset of the instability
of the planar interface (the MS criterion), but also clarified the
existence of the absolute stability of the planar interface. Until
now, most discussions on the morphological stability of the in-
terface have been conducted based on the MS model, under the
tacit assumption that the relevant field is so large that the influ-
ence of the mold on the stability of the interface is negligible.

In recent years, microelectromechanical systems (MEMS) and
microsensors have been developed with the accompanying pro-
gress in micromanufacturing technology, which includes the

microcasting process [6–9]. In this process, the solid–liquid inter-
face grows in small parts of a micrometric size under the restric-
tions of the mold walls.

Discussions have been carried out on the morphological sta-
bility of solids growing with a fixed shape, and when a solid of
spherical shape [10–12] or cylindrical shape [13] grows in molten
alloy, a rippled interface does not take a frequency of an arbitrary
value but of discrete values dominated by the size of the solid. The
value of the frequency, however, changes with increasing solid
size, and the planar interface grows stably until the frequency
becomes a critical value determined by the solid size. In this case,
the critical conditions are dependent on the critical solid size, but
are independent of the size of the medium surrounding the solid.
In the case of solidification in the mold, on the other hand, the
stability of the interface is largely affected by the shape and size of
the mold. For instance, when a thin plate of the alloy solidifies
[14–16], the critical conditions for stable growth of the planar in-
terface are dependent on the plate thickness. Also, when the alloy
directionally solidifies in a cylindrical mold of a small inside dia-
meter, the stability-instability criterion of the interface is expected
to be dependent on the inside diameter.

The present work examines the effect of the inside diameter of
the mold on the stability of the planar interface growing in a cy-
lindrical mold of a smaller inside diameter, such as in the micro-
casting at a high aspect ratio [6,9].
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2. Assumptions

We analyze the morphological stability of the planar interface
of dilute binary alloys growing in a mold of a smaller inside dia-
meter, based on the perturbation model (the MS model) [2–4].

When the alloy solidifies in the mold, the shape of the interface
is dependent on the temperature distribution in the mold [17] and
is also constrained by the mold wall. The contact angle between
the solid–liquid interface and the mold wall is therefore often
measured as a function of the mold size, as shown in Fig. 1 [18].
When the alloy solidifies in a mold of a smaller inside diameter,
the temperature becomes uniform in the cross section of the alloy,
and the interface is strained by the interfacial energy between the
solid and the liquid γLS, which balances with the interfacial en-
ergies of the liquid–mold wall interface γLM and the solid–mold
wall interface γSM through Young's equation [19]:

γ γ θ γ= + ( )cos 1LM LS C SM

where θC is the contact angle between the solid–liquid interface
and the mold wall. Although the contact angle in Fig. 1 was
measured for a stationary interface and not for a growing inter-
face, similar results are expected for slowly growing interface.
Consequently, postulating that the interface grows slowly in a
mold of a smaller inside diameter of less than 0.1 mm, we assume
that the solid–liquid interface crosses the mold wall at right
angles.

During solidification, convection driven by the temperature
distribution occurs in molten alloy and affects the shape of the
interface [17]. When the interface grows in a cylindrical mold of a
smaller inside diameter, however, the Reynolds number Re in the
mold becomes smaller. For example, when molten alloy flows
axially in a mold of an inside diameter of 0.1 mmwith a velocity of
10 mm/s, Re is calculated to be less than 5 by using the data on the
kinematic viscosity of typical molten alloys [20], and the molten
alloy behaves as a viscous fluid. Since the temperature is uniform
in the cross section of a mold of an inside diameter of less than
0.1 mm, the molten alloy does not flow in the radial direction, but
a laminar flow driven by the shrinkage during solidification occurs
in the axial direction with a velocity of μV, where μ is the solidi-
fication shrinkage and V is the growth rate of the interface. The
effect of the solidification shrinkage should therefore be con-
sidered in the analysis of the temperature and solute concentra-
tion during solidification. The solidification shrinkage of the alloy
is, however, generally only a few percent [21], and the increment

of the growth rate is small. Consequently, we do not consider the
effect of the solidification shrinkage in the analysis.

To analyze the morphological stability of the interface, the
shape of the rippled interface should be fixed. In terms of cy-
lindrical coordinates, the shape is uniquely expanded in a series of
Bessel functions and a Fourier series in the radial and circumfer-
ential directions, respectively. Also, the fluctuation of the interface
strained by interfacial tension is analogous to the vibration of the
membrane strained by surface tension, and it is known that a
circular membrane with the diameter d vibrates with natural
frequencies [22] given by
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where z, r and θ are the coordinates in the surface normal, the
radial and the circumferential directions, respectively, and t is the
time. Also amn, bmn, cmn and ωmn are the constants determined by
the initial and boundary conditions, m and n are integers de-
termined by the boundary conditions, and Jm(ωmnr) is the Bessel
function of the first kind of order m. When the end of the mem-
brane is fixed perpendicular to the surrounding wall, the constant
ωmn takes discrete values satisfying the following equation:
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Substituting t¼0 into Eq. (2), we obtain the initial shape of the
circular membrane.
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When there is no heat flow through the mold wall, the tem-
perature in the mold is uniform in the cross section, and the shape
of the interface is formulated as Eq. (4). We then assume that the
shape of the rippled interface with an infinitesimal amplitude of δ
is simply given by the expression:

( ) ( )ϕ δ ω θ= ( ) = … = ⋯ ( )J r m m ncos 0, 1, 2, , and 1, 2, 5m mn

where the constant ωmn takes discrete values determined by
Eq. (3). Eq. (3) is satisfied by ωmn¼0 for any vales of m, and when
ωmn¼0, ϕ becomes zero or takes a constant value to cause the flat
interface, which is conflict with the condition of the rippled in-
terface. We then eliminate ωmn¼0 at n¼0 from the solutions of
Eq. (3), and takeωmn of mZ0 and nZ1 as the positive solutions of
Eq. (3).

Additionally, even when cos(mθ) is replaced by sin(mθ) in Eq.
(5), the same results are obtained by subsequent calculations. Also,
when the interface makes angles differing from the right angles
with the mold wall, the analysis is conducted similarly to the
present work along with replacement of the right side of Eq. (3)
with tan(ψ), where ψ is the angle that the interface makes with
the normal of the mold wall.

3. Analysis

3.1. Amplitude of the rippled interface

We postulate that the solid–liquid interface grows steadily in a
cylindrical mold of an inside diameter d with a constant velocity V
in the z direction, as shown in Fig. 2. Also, it is assumed that the
heat is transferred by conduction but there is no heat flow through
the mold wall, and the solute is transferred in the liquid by dif-
fusion but there is no diffusion in the solid. Accordingly, the

Fig. 1. Change in the contact angle θc between the stationary solid–liquid interface
of Al–4 mass% Cu alloy and the mold wall with an inside diameter d of the mold, at
different furnace temperatures TF.
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