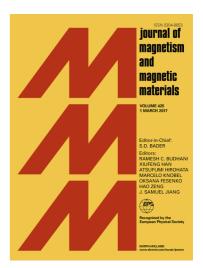
Accepted Manuscript

Dielectric response and room temperature ferromagnetism in Cr doped anatase TiO₂ nanoparticles

Swaleha Naseem, Wasi Khan, Shakeel Khan, Shahid Husain, Abid Ahmad


PII: S0304-8853(17)31872-3

DOI: https://doi.org/10.1016/j.jmmm.2017.09.051

Reference: MAGMA 63181

To appear in: Journal of Magnetism and Magnetic Materials

Received Date: 22 June 2017
Revised Date: 11 August 2017
Accepted Date: 20 September 2017

Please cite this article as: S. Naseem, W. Khan, S. Khan, S. Husain, A. Ahmad, Dielectric response and room temperature ferromagnetism in Cr doped anatase TiO₂ nanoparticles, *Journal of Magnetism and Magnetic Materials* (2017), doi: https://doi.org/10.1016/j.jmmm.2017.09.051

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Dielectric response and room temperature ferromagnetism in Cr doped anatase TiO₂ nanoparticles

Swaleha Naseem¹, Wasi Khan^{2,*}, Shakeel Khan¹, Shahid Husain² and Abid Ahmad³

Abstract:

In the present work, nanocrystalline samples of $Ti_{1-x}Cr_xO_2$ (x=0, 0.02, 0.04, 0.06 and 0.08) samples in anatase phase were synthesized through simple and cost effective acid modified sol gel method. The influence of Cr doping on thermal, microstructural, electrical and magnetic properties was investigated in TiO₂ host matrix. The surface morphology has revealed less agglomeration and considerable reduction in particle size of the nanoparticles (NPs) in case of Cr doped TiO₂ as compared to undoped TiO₂. Energy dispersive x-ray spectroscopy (EDS), Raman and x-ray photoelectron spectroscopy (XPS) established high purity, appropriate stoichiometry and oxidation states of the compositions. The dielectric properties of the nanoparticles were altered by the doping concentration, applied frequency as well as temperature variation. The variation in dielectric constant (??'), dielectric loss (δ) and ac conductivity as a function of frequency and temperature at different doping concentration of Cr were interpreted in the light of Maxwell Wagner theory, space charge polarization mechanism and drift mobility of charge carriers. Both undoped and Cr doped TiO₂ samples exhibit room temperature ferromagnetism (RTFM) that remarkably influenced by means of the Cr content. The significant enhancement in the magnetization was observed at 4% Cr doping. However, decrease in magnetization for higher doping signify antiferromagnetic interactions between Cr ions or superexchange interactions. These results reveal that the oxygen vacancies play a crucial role to initiate the RTFM. Therefore, the present investigation suggests the potential applications of Cr doped TiO₂ nanoparticles for spintronics application.

Keywords: Cr doped TiO₂ nanoparticles; Raman scattering; XPS; Dielectric properties; Room temperature ferromagnetism

¹Department of Applied Physics, Faculty of Engineering & Technology, Aligarh Muslim University, Aligarh-202002, India

²Department of Physics, Aligarh Muslim University, Aligarh-202002, India

³School of Materials Science and Engineering, Tsinghua University, Beijing-100084, China

^{*}Author to whom correspondence should be addressed.

Download English Version:

https://daneshyari.com/en/article/5490169

Download Persian Version:

https://daneshyari.com/article/5490169

<u>Daneshyari.com</u>