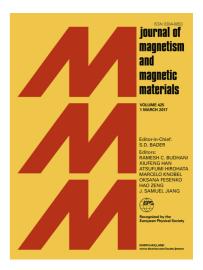
Accepted Manuscript

Boron, nitrogen, and nickel impurities in GeC nanoribbons: a first-principles investigation

Zhuo Xu, Yangping Li, Zhengtang Liu


PII: S0304-8853(16)33428-X

DOI: http://dx.doi.org/10.1016/j.jmmm.2017.02.054

Reference: MAGMA 62515

To appear in: Journal of Magnetism and Magnetic Materials

Received Date: 22 December 2016
Revised Date: 21 February 2017
Accepted Date: 26 February 2017

Please cite this article as: Z. Xu, Y. Li, Z. Liu, Boron, nitrogen, and nickel impurities in GeC nanoribbons: a first-principles investigation, *Journal of Magnetism and Magnetic Materials* (2017), doi: http://dx.doi.org/10.1016/j.jmmm.2017.02.054

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Boron, nitrogen, and nickel impurities in GeC nanoribbons: a first-principles investigation

Zhuo Xu, Yangping Li, Zhengtang Liu

(State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China)

Abstract

Using first-principles calculations based on the density functional theory we investigated the structural, electronic and magnetic properties of substitutional boron, nitrogen, and nickel impurities in germanium carbide (GeC) nanoribbons. Hydrogen terminated GeC ribbons with armchair and zigzag edges are considered here. We observed that all three impurities preferentially substitutes the Ge atom at the ribbon edge. In addition, the electronic band structures of the doped systems indicate that (i) the impurities could introduce impurity bands in the band gap and resulting in a reduction of the band gap of 7-AGeCNR, (ii) the metallic behavior of 4-ZGeCNR turns into semiconductor because of the incorporation of the impurities, (iii) the impurities could change the magnetic moment of 4-ZGeCNR and even introduce magnetic moment into the non-magnetic 7-AGeCNR.

Key words: Density-functional theory; germanium carbide nanoribbons; Boron, nitrogen, and nickel; magnetic moment

Download English Version:

https://daneshyari.com/en/article/5490276

Download Persian Version:

https://daneshyari.com/article/5490276

<u>Daneshyari.com</u>