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a b s t r a c t

We study spin wave excitations in a three-dimensional nanocomposite magnet of exchange coupled hard
(SmCo5) and soft (FeCo) phases. The dipolar interaction splits the spin wave energies into the upper and
lower branches of the spin wave manifold. When the amount of the soft phase is increased the energy of
low-lying spin excitations is considerably softened due to two reasons: (i) the low- lying mode locked
into the soft phase region with a spin wave gap at k ¼ 0 which scales approximately proportional to
the anisotropy constant of the soft phase and (ii) the internal dipolar field which comes from magnetic
charges forming at hard-soft boundaries with normals parallel to the magnetization displaces the spin
wave manifold toward the lower energies. With adding more soft phase the spin wave gap closes and
the system moves to another ground state characterized by the magnetization mismatch between spins
of the hard and soft phases.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Materials with periodically modulated magnetic and geometric
properties are of special interest recently from the viewpoint of
applications, which aim to manipulate propagating spin waves
[1–5]. Spin waves propagating in nonhomogeneous magnetic
nanostructures serve as information carriers and show the
existence of allowed frequency ranges and forbidden band gaps
[6–11]. The periodic modulation of magnetic properties are also
realized in nanocomposite magnets composed of exchange-
coupled hard and soft magnetic phases [12–14]. The hard phase
provides the immense magnetic anisotropy that stabilizes the
exchange-coupled soft phase against demagnetization. In multi-
layer geometry it gives the increase in the remnant magnetization
and the ultimate gain in the energy product with increasing
amount of the soft phase material [15]. However, in a geometry
where the nanocomposite is magnetized perpendicular to the
hard-soft boundary, the anticipated increase in the remanence
does not occur partly because the hard and soft phase magnetiza-
tion vectors are never completely parallel to each other [16].

In a nonhomogeneousmagneticmaterial values of the saturation
magnetization MS, anisotropy constant K and the direction of the
magnetization n0 are, in general, functions of the position vector r.

In a magnonic crystal the applied uniform magnetic field usually
forces all the magnetic moments to be magnetized in the direction
of the applied field [18–20]. In a nanocomposite hard-soft magnet
the behavior of the magnetization vector MðrÞ ¼ MSðrÞn0ðrÞ
depends on the demagnetizing effects and mutual arrangement of
easy axes of constituent ferromagnets. For an arrangement with
easyaxis (in the zdirection)perpendicular to thehard-soft boundary
the homogeneouslymagnetized stateMðrÞ ¼ MSðrÞẑ is energetically
unfavorable from the magnetostatic point of view. Because of the
discontinuity of the magnetization at the hard-soft boundary, a
magnetic charge qM ¼ �r �M is developed. This increases the
dipolar energy which can be written in the form [21]

Edip /
R
d3rd3r0qMðrÞqMðr0Þ=jr� r0j. For sufficiently low soft phase

content a strong anisotropy field of the hard phase and exchange
forces at soft-hard boundaries enforce thewholemagnet to bemag-
netized in the z direction.With addingmore soft phase with consid-
erably smaller value of anisotropy constant the soft phase spins
become tilted from the easy direction and their averaged direction
aremisalignedwith spins of the hard phase.Monte Carlo simulation
at finite temperatures [22] reveals that this misorientation grows
with temperature and as the amount of the soft phase is increased.
Such a misalignment, usually, is not considered in the context of
magnonic crystalswhere the nonuniform static demagnetizing filed
is assumed to be homogeneously averaged throughout the sample
[18].
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The dependence of the ground state magnetization in compos-
ite permanent magnets on the demagnetizing effects has been dis-
cussed previously for a single soft inclusion in a matrix of hard
phase [23]. These calculations reveal that the remnant magnetiza-
tion sensitively depends on the size of the inclusion. With increas-
ing of the fraction of the soft phase the long-range stray field
destroys the parallel alignment of the soft magnetic moments
and creates magnetic vortex-like structures. These calculations
are based on computational micromagnetism [24–26] and yield a
stable magnetization distribution by minimizing the total energy
of magnetic system.

Micromagnetic calculations [23] as well as an analytic estimate
of the nucleation field and the remanence enhancement [15] have
not discussed the thermally activated tilting of spins and the
resulting magnetization mismatch. The effect of thermal activation
can be understood if one knows the low-lying spin wave energies
EjðkÞ. The fluctuation of the magnetization is determined by the
density of the magnons which in turn is governed by the Boltz-
mann factor expð�EjðkÞ=kBTÞ. The lower the energy of spin excita-
tions, which turns out to be concentrated in the soft phase, the
more fluctuations of the soft phase spins and more reduction in
the remnant magnetization of the composite appears. Due to the
fluctuation of soft phase spins the remanence does not increase
proportional to the fraction of the soft phase, Mr ¼ v sMs þ vhMh

ðvs þ vh ¼ 1Þ, as it can be for a composite with homogeneous
magnetization.

To further elucidate the physics involved in the instability of the
homogeneously magnetized state, MðrÞ ¼ MSðrÞẑ, in the present
work we consider the spin wave spectrum in a three-
dimensional (3D) composite composed of a periodic array of hard
phase cubes immersed into a soft phase matrix. We incorporate
the effect of the nonhomogeneous saturation magnetization
MSðrÞ and internal magnetic chargers into the formalism of spin
wave excitations. We explicitly construct operators of spin-wave
excitations and calculate the corresponding eigenfrequencies. We
anticipate that the dipolar interaction will lower the spin wave
energy, which in turn enhances the fluctuation of the magnetiza-
tion at finite temperatures as these spin waves are thermally
excited.

A comparison of the behavior of low-lying spin excitations with
Monte Carlo simulation results [16] show the crucial dependence
of the low-lying spin excitations on dipolar effect in a hard-soft
composite. Because of the low magnitude of the anisotropy of
the soft phase the spin excitations are highly sensitive to the local
magnetic ordering induced by dipolar interaction [17]. In this
paper we extend our previous analysis [27] of a composite with
homogeneous exchange interaction, in which Jij ¼ const for any
nearest neighbors i and j, for the case of position-dependent
exchange interaction JðRi;Rj) and present the clarifying details of
incorporating the dipolar part of interaction into the formalism
of spin-wave excitations for nonhomogeneous ferromagnets. We
focus on the study of the dependence of the spin wave manifold
on the internal dipolar magnetic field that comes from magnetic
charges developing at hard-soft boundaries. For this we shall
extract the effective demagnetizing field Hdip from the spin-wave
dispersion behavior.

The paper is organized as follows. In Section II we present the
general theory of linear spin-waves in a nonhomogeneous
two-phase periodic structure of exchange-coupled hard and soft
phases. We first linearize the spin Hamiltonian in the position
space and then perform the diagonalization in the Fourier space.
We then proceed in comparing the analytical results obtained for
the behavior of low-lying spin excitations in a nonhomogeneous
composite with the spin-wave spectra for homogeneous ferromag-
nets. We discuss the implication of Hdip for spin-wave manifolds in

two-phase and one-phase ferromagnets. In Sec. III we discuss
results of our calculation and the effect of the internal demagnetiz-
ing field on the spin wave dispersion of the two-phase magnet. And
Sec. IV contains our conclusion.

2. Theoretical model

2.1. Two-phase composite magnet

We model the hard-soft composite as a periodic array of identi-
cal cubes of hard phase embedded into a soft phase matrix, as illus-
trated in Fig. 1. The easy axes of both phases are in the z direction.
Each cube has a linear dimension lh and separated from the adja-
cent one by a soft phase with linear dimension ls, so there is a peri-
odicity in the x; y and z directions with a period w ¼ lh þ ls. We
shall refer to this periodicity as w- periodicity.

We focus on the low-lying spin excitations that occur gradually
over a large distance. The magnetization,MðrÞ, for a coarse-grained
system, is defined on a discrete set of sites Ri in terms of block spin
variables Si ¼ SðRiÞ; jSij ¼ 1, as MðrÞ ’ MðRiÞSi, with MðRiÞ ¼
MSðRiÞ being the saturation magnetization density of the hard
(Mh) or soft (Ms) phase at site i. Spins of the hard and soft phases
are arranged in a three-dimensional cubic lattice with an effective
lattice constant a. The effective magnetic moment of site i is
MðRiÞv , where v ¼ a3 is the volume of a block spin cell.

The interaction between two spins Si; Sj located at Ri;Rj is
described by the Hamiltonian for a classical spin system, including
the nearest-neighbor exchange energy, the uniaxial magnetic ani-
sotropy term and the dipole–dipole interaction:

H ¼ �1
2

X0
i;j
Jij Si � Sj �

X
i
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i
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� g
2

X0
i;j
Dab Rij
� �
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b
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where Rij ¼ Ri � Rj, and the summations are over all distinct mag-
netic sites i and j with the restriction that Rij – 0. Indices a and b
denote the Cartesian components x; y or z, and
DabðRijÞ ¼ ð3RaijRb

ij � R2
ijdabÞ=R5

ij is the dipolar interaction tensor. In
Eq. (1) positions vectors Ri are given in units of the lattice spacing
a. The exchange constant Jij, is equal to Jh (Js) for the nearest neigh-
bor spins of hard (soft) phase and zero otherwise. The two phases
are exchange-coupled with a coupling constant Jhs which can be

estimated as the geometric mean of Jh and Js; Jhs ¼ ðJhJsÞ1=2. Ki is

Fig. 1. Geometry of hard-soft periodic structure. The z axis is the easy axis for the
hard and soft phases.
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