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a b s t r a c t

The phase diagram and magnetocaloric effect in itinerant magnets is explored within the Stoner theory,
which yields a reasonable description of the metamagnetic transition observed in various compounds.
We obtain the phase diagram as a function of temperature and magnetic field, identifying the region
of metastability around the first-order ferromagnetic transition. The impact on the magnetocaloric prop-
erties has been verified through the calculation of the isothermal entropy change DS, which is computed
from two alternative methods based on specific heat or magnetization data. From the direct comparison
between the two methods, we observe that the second one is strongly dependent on the process, and we
explain under what conditions they become equivalent by using the Clausius-Clapeyron equation. We
also discuss the effect of metastable states on the curves of DS. The evolution of the transition from first
to second order is in good agreement with the phenomenological approach based on the Landau expan-
sion. The results can be applied to different magnetic compounds such as RCo2, MnAs1�xSbx, and La
(FexSi1�x)13.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

The magnetocaloric effect (MCE) in intermetallic compounds
containing rare-earth R and transition metal M ions is a subject
of renewed interest, which deserves a detailed theoretical exami-
nation. Such study requires a coherent description of the emer-
gence of itinerant magnetism, the order of the magnetic phase
transitions, and how the thermodynamic properties depend on
temperature, pressure, and magnetic field.

Magnetic compounds undergoing a first-order magnetic transi-
tion may exhibit an augmented MCE, as reported for Gd5Ge2Si2 [1].
The MCE around a first-order magnetic phase transition has been
studied in Ref. [2] from a microscopic localized model of mag-
netism. A phenomenological description of the problem is pro-
vided by the Landau-Devonshire expansion [3,4].

Itinerant electron metamagnetism (IEM) is observed in various
compounds showing a large MCE, e.g., RCo2 [5,6], MnAs [7],
MnFeP1�xAsx [8], MnAs1�xSbx [9], and La(FexSi1�x)13 [10,11]. It
can be understood in terms of the Wolfarth-Rhodes-Shimizu the-
ory, which is also based on a Landau expansion of the free energy
up to sixth order in the magnetization [12,13]. The temperature

dependence of the coeficients can be determined by the spin fluc-
tuations within the Ginzburg-Landau theory [14–16].

A simple microscopic description of itinerant magnetism is pro-
vided by the Stoner theory. Some well known drawbacks of this
mean-field approach are discussed, e.g., in Refs. [17,18]. Neverthe-
less, it has been systematically evoked in the description of IEM
[19–22,24] and magnetocaloric properties of intermetallic com-
pounds [23]. Here we show that the results obtained in the Stoner
theory are compatible with the Shimizu description, and in good
agreement with experiments.

The evaluation of the isothermal entropy change DS from mag-
netization data has been a subject of intense debate when first-
order transitions are involved [25–32,6]. The context here is suit-
able to explore this point, through a direct comparison with the
alternative method based on calorimetric data.

In the next section we present the microscopic Hamiltonian and
some basic thermodynamic formulas. The obtained numerical
results are reported in Sections 3 and 4. The discussion is con-
cluded in the last section.

2. Theoretical model and thermodynamics

In presence of a magnetic field B, the band Hamiltonian in the
Stoner theory can be written as
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where tij is the hopping parameter, heff
r ¼ rh� Uhni�ri is the local

effective field, U is the on-site Coulomb interaction, and h ¼ lBB.
This Hamiltonian can be derived from the Hubbard model [33] in
a Hartree-Fock approximation. The electron interaction is taken into
account by a spin-dependent molecular field �Uhni�ri which implies
a self-consistent rigid band shift.

The magnetic enthalpy per site

E ¼ hHi=N � Uhni"ihni#i
can be evaluated by means of the integral
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q0ðeÞ is bare the density of states (in absence of U and h), and
f ðeÞ is the Fermi-Dirac distribution function.

The isothermal entropy change can then be obtained by
DSðT;hÞ ¼ SðT;hÞ � SðT;0Þ, where the entropy per site is given by

SðT;hÞ ¼
Z T

0
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T
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and chðTÞ ¼ @E
@T

� �
h is the heat capacity.

Another method assumes the Maxwell relation
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where m ¼ hni"i � hni#i is the magnetization per site. It allows the
determination of DS directly from the magnetization curves mðTÞ as

DSðT;hÞ ¼
Z h
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: ð6Þ

The use of Eqs. (4)–(6) requires special attention in presence of
first-order transitions, as will be discussed in connection with the
results in Section 4. The magnetic Gibbs potential per site
GðT; hÞ ¼ E� TS can be computed from Eqs. (2) and (4).

3. Metamagnetic transition

The following results correspond to a tight-binding band with
nearest-neighbor hopping on a simple cubic lattice at half-filling.
The nearest-neighbor hopping parameter t is taken as the energy
unit.

Fig. 1 shows the magnetization isotherms mðhÞ obtained in the
self-consistent calculation, which exhibit the standard odd sym-
metry mð�hÞ ¼ �mðhÞ. For lower values of U, the system is in a
paramagnetic (PM) state. The curves are monotonically increasing,
starting from zero and showing a marked plateau at m � 0:6. The
magnetization continue to increase slowly towards much higher
values of the magnetic field, eventually ataining the saturation
value m ¼ 1, when the minoritary spin band is empty.

For sufficiently large values of U, a ferromagnetic (FM) solution
with spontaneous magnetization emerges at low temperature,
according to the Stoner criterium UqðEFÞ > 1. It is satisfied at the
value U0 ¼ 7:0092t (the density of states at the Fermi level being
qðEFÞ ¼ 0:14267), where the PM solution becomes unstable for
h ¼ 0. This corresponds to a divergent paramagnetic susceptibility
v ¼ @m

@h

� �
T
, as can be verified from the respective curve in Fig. 1.

For intermediate values of U, the curves in Fig. 1 exhibit a reen-
trant S-like shape, so that, for some range of h, multiple solutions
are found for m, and the corresponding Gibbs potential GðT;hÞ is
multivalued. The portion of the isotherms where the slope of
mðhÞ is negative corresponds to unstable solutions, and the
remaining FM and PM solutions may be stable or metastable.

The variation of the Gibbs potential

DGðT;hÞ ¼ �
Z h

0
mðT;hÞdh ð7Þ

as a function of h for fixed T is illustrated in Fig. 2, which corre-
sponds to a standard first-order transition [34]. We can identify
the PM portion of the curve at low h, the FM portion of the curve
at high h, and the region of metastablility, where the Gibbs potential
can assume three different values for a given h. The crossing of the
PM and FM segments of the curve occurs at h�, where the PM and
FM solutions have the same Gibbs potential
GPMðT; h�Þ ¼ GFMðT;h�Þ. The value of h� must be determined by a
Maxwell construction.

For values of U just below U0, the PM solution is metastable for
h ¼ 0. A modified Stoner criterium for the stability of the FM phase
is provided by the condition h� ¼ 0, which is verified for

Fig. 1. Magnetization isotherms at low temperature (T ¼ 0:005t) for different
values of U.

Fig. 2. Magnetic Gibbs potential as a function of the magnetic field at T ¼ 0:005t for
U ¼ 6:96t.
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