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a b s t r a c t

In this paper we investigate the antiferromagnetic Heisenberg model on the checkerboard lattice by the
Oð3Þ Non-linear Sigma Model (NLSM). The checkerboard lattice is distinguished from the antiferromag-
netic square lattice (with coupling constant J) by the presence of diagonal crossing (with coupling con-
stant J0) in half of the sites. This lattice model is the direct analogous of the three-dimensional
pyrochlore lattice in a two-dimensional surface. Many effects of the three-dimensional model version,
as the Quantum Order-by-Disorder, have been recently described also in the checkerboard lattice. Here
we have developed the continuous version of the Heisenberg model on the checkerboard lattice and
applied Renormalization Group together other techniques to analyze the both cases J < J0 and J > J0. We
have therefore determined the effects of the crossing interaction J0 on the phase transitions. In addition,
skyrmion solutions and their possible influences on these transitions were also considered.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Even after many years, frustrated models, specially in mag-
netism, have surprised physicists with fascinating new phenom-
ena. Since the 1980 decade, one-dimensional liquid spin is
known from theoretical and experimental works but one can not
surely assert the same about two-dimensional models. Yet, nowa-
days there is an uncertainty about the possibility of a real disor-
dered spin state at zero temperature and, notwithstanding the
many candidate models to present such a state, there is not a con-
clusive study about the two-dimensional spin liquids. It is believed
that frustration may be a key ingredient to create states without
any kind of spin order even at zero temperature. Frustration is
associated with the inability of the system to reach a singular state
that minimizes the energy and so, in frustrated systems, the
ground state is highly degenerated. Curiously, thermal and
quantum fluctuations raise the degeneracy, allowing the system
to become ordered again. This symmetry broken driven by fluctu-
ations is the so-called Order-by-Disorder (ObD) effect (or Order-by-
Quantum-Disorder when quantum perturbations are responsible
for the ground state selection). The checkerboard lattice is a model
where the ObD effect is predicted by many different approaches
[1–6]. In summary, if the spin-waves are non-interacting, then

the antiferromagnetic checkerboard lattice is able to develop a spin
liquid state but, when the spin-waves interaction is present in the
system, the ground state is ordered at zero temperature. This
ordering is due to spin field fluctuations.

In this paper we have applied the continuous approach to the
antiferromagnetic Heisenberg Hamiltonian to the checkerboard
lattice. Here, we represent the checkerboard model by two inter-
connected sublattices with order parameter a (smaller distance
between two neighbor spins) as shown in Fig. (1). The Hamiltonian
is given by

H ¼ J
X
hi;ji

~Si �~Sj þ J0
X
hi;ji

~Si �~Sj; ð1Þ

where the first sum is over nearest neighbor spins on different sub-
lattices (with coupling constant J > 0) and the other one is over
neighbor spins on the same sublattice (with coupling constant
J0 > 0). Instead using J and J0, we adopt the ratio g ¼ J0=J along the
text.

The checkerboard structure is composed by a square lattice
with diagonal crossing in half of the square cells; note that the yel-
low squares in Fig. (1) is different from the ones in J � J0 model, in
which the crossing interactions are present in all cells. The
checkerboard lattice is really appealing due to its similarities with
the planar pyrochlore lattice (the two-dimensional projection of
the tetrahedral pyrochlore lattice). In fact, in the fully frustrated
limit, when g ¼ 1, both models have very similar properties. The
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ground state, for instance, is a gapped phase with no symmetry
breaking.

In the limit of weak crossing interaction, g � 1, we recover the
two-dimensional antiferromagnetic square lattice. At zero temper-
ature the ground state of this system is the collinear Néel long-
range order with gapless excitations, different from the g ¼ 1 case.
Therefore, it is expected a phase transition which separates the
gapless phase from the gapped phase at a critical ratio
gc ¼ J0c=J < 1. Since magnetic compounds with small spin are more
susceptible to quantum fluctuations, it is also expected a smaller
critical point gc for spin-1=2. If we consider spin-wave interactions,
then only models with spin-1=2 could support states with no mag-
netization. The cases with spin-1 (and higher spin values) always
present some continuous symmetry breaking at zero temperature.
For spin-1=2, Sindzingre et al. [7] have used Exact Diagonalization
to show the closure of the gap at gc ¼ 0:65, while Khatami and
Rigol [8] have demonstrated the disappearance of the AF order at
low temperatures when g ¼ 0:75 (considering spin-1=2). These
results are close to the semiclassical approaches (obtained from
the linear spin-wave theory) which predict a gapless ordered phase
for g 6 0:75 (gc � 0:93 for S ¼ 1, at this level of approximation).
However, Canals [9] has shown that the interaction between
spin-waves increases considerably the critical point to gc ¼ 0:98.

Above the critical point gc , the checkerboard model presents a
gapped Valence Bond Crystal (VBC) with long-range quadrumer
order [2,10–13]. On the other hand, in the limit J ¼ 0, there is an
ensemble of non-coupled one-dimensional antiferromagnetic spin
chains. The AF spin chains are authentic spin liquid states with
gapless excitations (deconfined spinons) for semi-integer spins
and gapped excitations for integer values of spin. The integer spin
chain gap was firstly predicted by Haldane using the Oð3Þ Non-
linear Sigma Model (NLSM), the continuous representation of the
Heisenberg model. The absence of the Haldane gap for the semi-
integer spin chain is purely due to topological effects which, in
general, are absent in higher dimensional models. The region
J0 > J is not yet well documented and it is one of the aims of the
present work.

The continuous approximation allows us to determine the prop-
erties of the excitations in both limits J > J0 and J < J0. Here, we
have calculated the critical spin Sc which separates the gapless
phase with Long-Range-Order (LRO) from the gapped one, where
the order-parameter decays exponentially. The gapped spectrum
excitation is an indicative of a possible liquid spin phase.

2. The continuous model

2.1. First case J > J0

To develop the continuous model we have properly replaced the
sum over neighbors sites in Hamiltonian (1) by a sum over cells of
a diagonal square centered lattice, represented here by C. The cells
considered here are represented in Fig. (1) by yellow squares. All
the spin interactions are included in the yellow cells and the
expressions obtained from the new approach have exactly the
same physics as the original Hamiltonian. We denote the position
of a cell by ~r and the spins on the corners by ~rij ¼~r þ D~rij where
D~rij ¼ aði; jÞ and i; j ¼ 0;1.

In order to get the continuous approach, we have used the stag-

gered configuration with wave vector ~Q ¼ ðp=a;p=aÞ as the ground
state (coherent with the limit J0 < J). Since each cell contains four
spins, we need four independent vector fields [14] to correctly keep
the freedom degrees. For a cell in the position ~r, the four corners
spins are represented by

~Sð~r00Þ ¼S~mþ aSð~l1 þ~l2 þ~l3Þ ð2aÞ
~Sð~r10Þ ¼ � S~mþ aSð~l1 �~l2 þ~l3Þ ð2bÞ
~Sð~r01Þ ¼ � S~mþ aSð�~l1 þ~l2 þ~l3Þ ð2cÞ
~Sð~r11Þ ¼S~mþ aSð�~l1 �~l2 þ~l3Þ ð2dÞ

The field ~m defines the staggered field ~n ¼ ð�1Þiþj~m, while the

fields~l are three small deviations from~n. All fields ~m and~l are eval-
uated at position~r. The lattice parameter a is introduced to ensure
only first order approximation in the series expansion. The con-

straint ~S2 ¼ S2 is recovered if the fields obey m2 þ a2S2ðl21þ
l22 þ l23Þ � m2 ¼ 1 and ~m �~li þ a~lj �~lk ¼ 0, where i; j; k are different
indices.

The fields~l represent the fast modes spin fluctuations and they
will be integrated in order to obtain an effective model. As usual,
the partition function is obtained using the spin coherent states
which, in the imaginary time, provides

Z ¼
Z

D~Sdð~S2 � S2Þe�S ; ð3Þ

with the action S ¼P iSx½~S=S� þ R b
0 HðsÞds. The local delta Dirac

function assures the Oð3Þ non-linear constraint~S2 ¼ S2 for each site
i. The measure of the integration is understood as an integration

over the slow and fast modes, ~m and~l, respectively, on each site

of the lattice. In the first term, x½~S=S� represents the Berry phase
(the kinetic term) and the sum is done over all spins or, as we have
adopted, over all cells in C. The second term in the action (the
potential term) is given by the mean value of Hamiltonian (1) in
the coherent state basis.

Using the parametrization fields we have obtained the continu-
ous representation of the kinetic term given by

X
spins

iSx½~S=S� ¼ iS
2

X
r2C

X
ij

x½~Sð~r þ D~rijÞ=S�

¼ iS
a

Z
d2r

Z b

0
ds~l3 � @~m

@s
� ~m

� �
: ð4Þ

Here we have adopted only first order terms in the expansion of
the Berry phase functional. On the other hand, Chaudhury and Paul
[15,16] have included higher order terms in the expansion to
describe also the medium-wavelength limit of the spin-wave in
the two-dimensional quantum Heisenberg antiferromagnet. How-
ever the medium wave-length analysis is out the scope of the

Fig. 1. The checkerboard lattice is composed by two interconnected square lattices,
each one represented by a different color (only in the online version). The solid lines
represent the J interaction while the dotted ones are the J0 interaction. The yellow
squares represent the cells considered in the work. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
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