Accepted Manuscript

 $Nd_2Fe_{14}C$ -based magnet with better permanent magnetic properties prepared by a simple mechanochemical method

Hongmin Geng, Yuan Ji, Jingjing Zhang, Yuchao Gao, Yu Yan, Wenquan Wang, Feng Su, Xiaobo Du

PII:	S0304-8853(17)30666-2
DOI:	http://dx.doi.org/10.1016/j.jmmm.2017.05.071
Reference:	MAGMA 62775
To appear in:	Journal of Magnetism and Magnetic Materials
Received Date:	22 February 2017
Revised Date:	19 May 2017
Accepted Date:	24 May 2017

Please cite this article as: H. Geng, Y. Ji, J. Zhang, Y. Gao, Y. Yan, W. Wang, F. Su, X. Du, Nd₂Fe₁₄C-based magnet with better permanent magnetic properties prepared by a simple mechanochemical method, *Journal of Magnetism and Magnetic Materials* (2017), doi: http://dx.doi.org/10.1016/j.jmmm.2017.05.071

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	Nd ₂ Fe ₁₄ C-based magnet with better permanent magnetic properties
2	prepared by a simple mechanochemical method
3	Hongmin Geng, Yuan Ji, Jingjing Zhang, Yuchao Gao, Yu Yan, Wenquan Wang, Feng Su, Xiaobo
4	Du^1
5	Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education),
6	College of Physics, Jilin University, Changchun 130012, PR China
7	Abstract
8	Nd ₂ Fe ₁₄ C-based magnet is prepared by a mechanochemical method, namely high-energy
9	ball-milling $Nd_2Fe_{11}B_x$ (x=0-0.15) alloy in heptane (C ₇ H ₁₆), followed by annealing to 850°C in
10	vacuum. Under the action of high-energy ball-milling, $Nd_2Fe_{11}B_x$ react with heptane to form
11	$NdH_{2+\delta}$, Fe-(CB), C, etc. H ₂ is released and Nd_2Fe_{17} , $Nd_2Fe_{17}C_x$ (x=0-3), $Nd_2Fe_{14}C$, Nd carbides
12	and α -Fe are formed in the subsequent annealing. C amount depends on ball-milling time t. Long
13	time ball milling or high C content suppresses the formation of 2:17 phase and favors the
14	formation of 2:14:1 phase in the final products. Excessive ball-milling results in the quick increase
15	of α -Fe. The maximum of magnetically hard Nd ₂ Fe ₁₄ C is obtained at $t = 4$ h. For Nd ₂ Fe ₁₁ samples,
16	there exists considerable quantity of Nd carbides and α -Fe phase appears earlier and increases
17	rapidly with extending the ball-milling time <i>t</i> . The addition of B element shortens the ball-milling
18	time of the formation of maximum $Nd_2Fe_{14}C$ and prominently suppresses the formation of Nd
19	carbide and α -Fe. The optimum magnetic properties, coercivity _i H_c of 1193.7 kA/m, remanence M_r
20	of 580.9 kA/m, maximum magnetic energy product $(BH)_{max}$ of 91.7 KJ/m ³ is approaching to its
21	theoretic value of 99.2 KJ/m ³ for isotropic $Nd_2Fe_{14}C$ magnet, are obtained in $Nd_2Fe_{11}B_{0.06}$ alloy
22	ball milled for 3.5h.
23	Keywords: Nd ₂ Fe ₁₄ C; mechanochemical method; high-energy ball-milling; magnetic properties;
24	heptane
25	1. Introduction
26	Similar to the tetragonal $Nd_2Fe_{14}B$ (2:14:1) compound which is applied widely as permanent
27	magnet [1-3], the Nd ₂ Fe ₁₄ C compound also exhibits excellent intrinsic permanent magnetic

28 properties [4-5]. The magnetization of $Nd_2Fe_{14}C$ compound is a little smaller than that of

¹ Corresponding author: duxb@jlu.edu.cn

Download English Version:

https://daneshyari.com/en/article/5490441

Download Persian Version:

https://daneshyari.com/article/5490441

Daneshyari.com