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a b s t r a c t

In this paper the reciprocal relations for the matrix coefficients of the resistance of nonlinear multipole
located in an inhomogeneous magnetic field was considered. It is shown that the nonlinear resistance
matrix can be represented as the sum of two matrices. The coefficients of the first matrix depend on both
the current flowing through the multipole and the external inhomogeneous magnetic field. First matrix is
responsible for nonlinear effects. The second matrix coefficients depend only on the induction of the
external inhomogeneous magnetic field and are responsible for the Hall effect and the offset resistance.
We obtain reciprocal relations for these matrices and experimentally show that the classical reciprocal
relations are valid for the second matrix within the limits of experimental accuracy.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Studying of linear and nonlinear transport processes in mag-
netic and non-magnetic materials is a well-developed research
field in the physics of magnetic phenomena [1,2]. The interest in
theoretical and experimental studying of the influence of magnetic
field on reciprocal relations for kinetic coefficients is mostly due to
the widespread use of non-reciprocal passive components in mag-
netic microwave devices [3]. In recent years, there has been an
increased interest in magnetoelectronic devices which utilize both
the charge and the spin of the electron, since these devices are
expected to provide unprecedented functionalities for energy effi-
cient spin-based information processing. The examples of such
spintronic devices are giant magnetoresistance spin valve and
magnetic tunnel junction [4]. Room-temperature reversible spin
Hall effect, Onsager reciprocal relations between spin and charge
currents [5], and spin-transfer torque [6] open up the possibility
of switching one of the magnetic layers by means of spin-
polarized current, thus paving the way to compact devices for
random access memory applications.

Magnetic materials used in modern spin-wave electronics
have essentially nonlinear susceptibility and conductivity and are
influenced by inhomogeneous magnetic field such as surface
magnetostatic waves. Analytical and numerical simulations of

uniaxial ferromagnets, used in magnetoelectronic devices shows
that they exhibit nonlinear susceptibility and very distinct non-
reciprocity [8]. However, classical reciprocal relations for the
kinetic coefficients [7] are valid in linear case for homogeneous
magnetic field. Hence, the applicability of reciprocal relations for
analysis, calculation and optimization of signal characteristics of
magnetoelectronic devices is of topical interest.

In recent years, much effort was devoted to obtaining reciprocal
relations in the particular cases of nonlinear and inhomogeneous
systems such as two-dimensional systems with nonlinear conduc-
tivity [9]. However, the influence of external magnetic field and the
internal magnetization of material on reciprocal relations for non-
linear systems has not yet been considered.

Common statistical methods for mathematical analysis of recip-
rocal relations are inapplicable in nonlinear case [10]. Thus, obtain-
ing general reciprocal relations for a nonlinear system in
inhomogeneous magnetic field is not possible without some
assumptions about processes taking place in it. Therefore, it is of
particular interest to justify such relations for the most general
assumptions for measuring physical quantities with high precision
without disturbing the processes in the system. A possible example
of such a system is a nonlinear multipole with transport processes
which are described by the kinetic equation.

2. Theory

Theoretical analysis is divided into several parts. Derivation of
the material equation of a nonlinear homogeneous medium in
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the relaxation approximation is considered in Section 2.1. Both
current density and electric field intensity inside a solid cannot
be measured. Therefore, Section 2.2 concerned with derivation of
electric potential distribution for specified currents through exter-
nal terminals on the basis of the obtained material equation in
magnetostatic approximation. In Section 2.3 we obtain reciprocity
relations for matrix of nonlinear resistances of a magnetoactive
multipole.

2.1. Nonlinear conductivity in magnetic field

Transfer processes in homogeneous and stationary medium in
the relaxation approximation are described by the Vlasov kinetic
equation [11]:

qðEþ v � BÞ � @f
@p

¼ � f � f 0
s

; ð1Þ

where f(p) is the distribution function of charge carriers over the
momentum p, f0(p2) – is the equilibrium distribution function, q is
the charge of the carrier, s is the ensemble mean relaxation time.
In the stable state of medium which is isolated from any external
influences except electric and magnetic fields, the distribution
function of f(p) is uniquely determined by the applied magnetic
and electric fields. It means the uniqueness of the solution of
Eq. (1).

Let us proceed with the new variables. Assuming that the exter-
nal magnetic and electric fields are static and homogeneous, and
that they are nonzero and not codirectional, let us denote

Y1 ¼ pE; y2 ¼ pB; y3 ¼ p½E� B� ð2Þ
We then can represent the momentum p via vectors E, B and

E � B:

p ¼ A1Eþ A2Bþ A3½E� B�; ð3Þ
where Ai are scalar coefficients. To determine these coefficients, we
multiply equation (3) by vectors E, B and B � E:

p ¼ B2y1 � EBy2
jE� Bj2 Eþ E2y2 � EBy1

jE� Bj2 Bþ y3
jE� Bj2 E� B½ �: ð4Þ

Note that the there is a one-to-one correspondence between trans-
formations (2) and (4) and

@f a
@p

¼ E
@Fa
@y1

þ B
@Fa
@y2

þ ½E� B� @Fa
@y3

; ð5Þ

where the distribution function F(y1, y2, y3) is obtained from func-
tion f(p) by replacing the variables (4):

f ðpÞ ¼ Fðy1 ¼ pE; y2 ¼ pB; y3 ¼ p½E� B�Þ ð6Þ

Then Eq. (1) is then transformed to:

E2 þ y3
m

� � @F
@y1

þ EB
@F
@y2

þ B2y1 � EBy2
� � @F

@y3
¼ F � F0

qs
; ð7Þ

where m is the effective mass of the charge carrier.
Let us notice that in the Eq. (2) the variables y1, y2 are linearly

dependent on E and B. In Eq. (7), they are considered as indepen-
dent variables, while the components of momentum p are
expressed through them according to (4). So, when we change
the signs of the fields E and B, the variables y1, y2, y3 in Eq. (7)
do not change. In addition, although the components of
momentum p change when the signs of fields of E and B change,
the Jacobian J of transformation (4) does not change. Indeed, taking
into account the Eq. (2) we get:

J ¼ @ðp1; p2; p3Þ
@ðy1; y2; y3Þ

¼ 1

jE� Bj2
: ð8Þ

Let us limit ourselves to consideration of stable states of the
medium. Eq. (7) is invariant to simultaneous inversion of the fields
E and B. Thus, the unique solution of (7) is also invariant to the
simultaneous inversion of the fields E and B:

Fðy1; y2; y3;�E;�BÞ ¼ Fðy1; y2; y3;E;BÞ ð9Þ
The constitutive equation for stationary, homogeneous and iso-

tropic medium, taking into account Eq. (4), is as follows [11]

j ¼
Z

cqp
m

f ðpÞd3p ¼ K1ðE;BÞEþ K2ðE;BÞBþ K3ðE;BÞ½E� B�; ð10Þ

where c – charge carrier density,

K1ðE;BÞ ¼ cq=m
jE�Bj4

RfB2y1 � EBy2gFðyÞd3y;

K2ðE;BÞ ¼ cq=m
jE�Bj4

RfE2y2 � EBy1gFðyÞd3y;

K3ðE;BÞ ¼ cq=m
jE�Bj4

R
y3FðyÞd3y:

ð11Þ

As follows from Eqs. (9) and (11)

KnðE;BÞ ¼ Knð�E;�BÞ; n ¼ 1; 2; 3: ð12Þ
Note that the coefficients Kn(E, B) in the form of Eq. (11) are unde-
termined if E = 0 and B = 0. Let us use an artificial method for ana-
lyzing constitutive Eq. (10) in the case of weak fields. Nonlinearity
can be considered substantial in the medium when the energy
acquired by charge carriers during mean free path lT is comparable
with kT. In this terms, weak electric field means |E| << ET = uT/lT,
where uT = kT/q is the thermal potential of the primary charge car-
riers. The constitutive equation for homogeneous and isotropic
medium in magnetic field has the form of Ohm law in which
Lorentz force is added to Coulomb force:

j ¼ cqm Eþ 1
cq

½j� B�
� �

;

where m is the mobility of charge carriers. Solving this equation
with respect to the current density vector j, we get

j ¼ r
1þ jmBj2

Eþ rm2ðEBÞ
1þ jmBj2

Bþ rm
1þ jmBj2

½E� B�; ð13Þ

where r ¼ cq is the conductivity of medium at zero electric and
magnetic fields.

Comparing relations (10) and (13), let us write down the consti-
tutive equation for the medium in the form of

j ¼ rf1þ aðE=ET ;mBÞgEþrmETbðE=ET ;mBÞB
þrmcðE=ET ;mBÞ½E� B�: ð14Þ

Here, aðE ¼ 0; B ¼ 0Þ ¼ bðE ¼ 0; B ¼ 0Þ ¼ 0; cðE ¼ 0; B ¼ 0Þ ¼ 1,
and, according to Eq. (12),

að�E;�BÞ ¼ aðE;BÞ; bð�E;�BÞ ¼ bðE;BÞ; cð�E;�BÞ ¼ cðE;BÞ:
ð15Þ

2.2. Magnetostatic approximation

Let us consider a generalized structure of galvanomagnetic ele-
ment in the form of a three-dimensional multipole D with M con-
tacts (Sm, m = 1, 2, . . ., M). Let the linear sizes of the element be
much larger than the mean free path of the charge carriers lT.
Finally, let B = Be + B0 be the total induction of magnetic field in
the element, where Be is the field created by external sources
and B0 is the field which is generated by current flowing through
the galvanomagnetic element. The inhomogeneous field B’ inside
the element can significantly exceed the external field Be at high
current densities. Therefore, the charge carriers in the element will
be in the substantially inhomogeneous field B. The constitutive
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