Accepted Manuscript

Magnetically tunable bipolar switching of the exchange-bias field in Co₂TiO₄

A. Wei, S. Tao, Y. Fang, Z.D. Han, B. Qian, X.F. Jiang, H. Zhou, R.J. Tang, D.H. Wang

PII:	\$0304-8853(17)30334-7
DOI:	http://dx.doi.org/10.1016/j.jmmm.2017.06.002
Reference:	MAGMA 62798
To appear in:	Journal of Magnetism and Magnetic Materials
Received Date:	4 March 2017
Revised Date:	10 May 2017
Accepted Date:	1 June 2017

Please cite this article as: A. Wei, S. Tao, Y. Fang, Z.D. Han, B. Qian, X.F. Jiang, H. Zhou, R.J. Tang, D.H. Wang, Magnetically tunable bipolar switching of the exchange-bias field in Co₂TiO₄, *Journal of Magnetism and Magnetic Materials* (2017), doi: http://dx.doi.org/10.1016/j.jmmm.2017.06.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Magnetically tunable bipolar switching of the exchange-bias field in Co₂TiO₄

A. Wei¹, S. Tao¹, Y. Fang^{1,*}, Z. D. Han¹, B. Qian^{1,*}, X. F. Jiang¹, H. Zhou², R. J. Tang², and D. H.

Wang³

¹Jiangsu Laboratory of Advanced Functional Materials, Department of Physics, Changshu Institute

of Technology, Changshu 215500, China

²Jiangsu Key Laboratory of Thin Films, College of Physics, Optoelectronics and Energy, Soochow

University, Suzhou 215006, China

³National Laboratory of Solid State Microstructures and Key Laboratory of Nanomaterials for

Jiang Su Province, Nanjing University, Nanjing 210093, People's Republic of China

Abstract

Coupling at the interfaces between antiferromagnetic and ferromagnetic constituents is known to be responsible for the exchange-bias effect, where external stimulus like temperature, electric or magnetic fields are supposed to influence the associated phenomenology. In this paper, we prepare the polycrystalline Co_2TiO_4 and investigate its temperature- and field-dependent magnetization, from which an unusual exchange-bias effect associated with magnetic reversals is extracted. At low temperature, a continuous crossover from negative to positive exchange-bias fields can be obtained with increment of the cooling magnetic field, showing a magnetically tunable effect. The bipolar switching of exchange-bias field in this compound depends on the relative orientation between Co^{2+} and $[Co^{3+}Ti^{3+}]$ magnetic moments.

Keywords: Spinel; Ferrimagnetic; Spin-flip; Exchange bias

*Corresponding author E-mail: <u>fangyong@cslg.cn</u> (Y. Fang) and <u>njqb@cslg.cn</u> (B. Qian)

Download English Version:

https://daneshyari.com/en/article/5490462

Download Persian Version:

https://daneshyari.com/article/5490462

Daneshyari.com