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On calculation of RKKY range function in one dimension
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a b s t r a c t

The effect of strong singularity in the calculation of range function for the RKKY interaction in 1D electron
gas is discussed. The method of handling this singularity is presented. A possible way of avoiding the sin-
gularity in the Ruderman–Kittel perturbation theory in 1D is described.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Some years after the discovery of Ruderman–Kittel–Kasuya–Y
oshida (RKKY) interaction between localized magnetic moments
in three dimensions [1], Kittel considered an extension of this
interaction to lower dimensional system [2]. In the late 1980’s
and beginning of the 1990’s the RKKY interaction was recognized
as one of the mechanisms of coupling between magnetic layers
in metallic superlattices [3], and the energy of RKKY interaction
in quasi 1D systems was determined experimentally by Parkin
and Mauri [4]. A review of these efforts is summarized in Ref.
[5]. Later, the RKKY interaction in 1D or quasi-1D systems was
investigated in many other works, see e.g. [6], and this subject is
of actuality until present days, see e.g. [7]. For this reason, all sub-
tleties of this problem should be clarified.

In his work, Kittel calculated the energy of RKKY interaction in
one dimension between two localized magnetic moments embed-
ded in a free electron gas [2]. He calculated first the magnetic sus-
ceptibility vðqÞ of the electron gas in the presence of magnetic
moments and then the range function was obtained as the Fourier
transform of vðqÞ. In the appearing integral Kittel changed the
order of integration which lead to erroneous results predicting a
finite interaction energy at infinite distance between localized
moments. This error was corrected in the Erratum to Ref. [2], and
the correct result was obtained with a reverse order of integration.
Some time later Yafet [8] showed that the problem reported by
Kittel is caused by the presence of a strong singularity of the

double integral at k ¼ q ¼ 0 and, because of the singularity, it is
not allowed to change the order of integration over k and q vari-
ables. To show this, Yafet calculated twice the range function tak-
ing different orders of integrations and obtained different results.
Then he determined the correct order of integrations. Further sub-
tleties of this problem were discussed by Guliani et al. [9]. Litvinov
and Dugaev [10] showed that an application of Green’s function
formalism allows one to avoid singularities at k ¼ q ¼ 0.

There exists an alternative method to calculate the RKKY inter-
action proposed in the original approach of Ruderman and Kittel
(RK) to the 3D case [1]. This method is based on a direct calculation
of the second order correction to the energy of free electron gas in
the presence of two localized magnetic moments. In 3D one
obtains a double integral over jk0j > kF and jkj 6 kF domain, which
does not contain the strong singularity. This integral is then
replaced by a difference of two integrals. Applying this procedure
to 1D gas one finds that, surprisingly, each of the two integrals con-
tains a strong singularity at k ¼ k0 ¼ 0. This singularity does not
exists in 2D or 3D cases. But in the 1D case there appears a singu-
larity which is analogous to that appearing in the calculation of the
range function in one dimension with the use of susceptibility vðqÞ
discussed by Yafet [8].

In the present note we analyze the effect of strong singularity at
k ¼ k0 ¼ 0 on the range function of the RKKY interaction in 1D cal-
culated with the use of RK approach. Our results extend previous
analyzes of singularities appearing in the calculations of the range
function with use of susceptibility vðqÞ in 1D, as described in Refs
[2,8,9]. Then we show the effect of the order of integration over the
singular part of the integral in the 1D case and determine the cor-
rect order of integration. Finally we propose another way to calcu-
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late the range function using a domain that is free of strong
singularities.

2. Theory

Let us consider a one-dimensional free electron gas. Let the two

spins Ŝi be located at Ri, where i ¼ 1;2. A coupling between the
conduction electrons and the localized spins is assumed in the
form of s-d interaction

bHsd ¼ Jsd
N1D

X
i¼1;2

dðR� RiÞŜir̂; ð1Þ

where r̂ is electron spin operator, Jsd is the energy of s-d coupling,
and N1D is the one-dimensional density of magnetic atoms. Note
that Jsd=N1D has the dimensionality of [energy] � [length]. Following
Ruderman and Kittel, the second order correction to the energy of
electron gas perturbed by localized spins is [1]

DEð2Þ ¼ J2sd
ð2pÞ2N2

1D

2m�

�h2 ŜiŜjF1DðrÞ ð2Þ

where

F1DðrÞ ¼
Z kF

�kF

dk
Z �kF

�1
þ
Z 1

kF

 !
cosðkrÞ cosðk0rÞ

k02 � k2
dk0

" #
; ð3Þ

in which m� is the electron effective mass, kF is the Fermi vector,
r ¼ Ri � Rj, and F1DðrÞ is the so-called range function. The order of
integration in Eq. (3) follows from the method of calculation of
DEð2Þ: first one selects the wave vector k, calculates the second order

correction DEð2Þ
k to the electron’s energy Ek [square bracket in Eq. (3)],

and then sums DEð2Þ
k over k within the 1D Fermi sphere. Considering

Eq. (3) one concludes that, since the k vectors are inside the 1D Fermi
sphere and the k0 vectors are outside the sphere, the denominators in
Eq. (3) are always nonzero and no singularity occurs.

The difficulty in Eq. (3) is that the integral over dk0 can not be
calculated analytically. To overcome this problem RK [1] proposed
to replace the integral in Eq. (3) over the domain

DRK : ðk; k0Þ 2 ½�kF ; kF � � R n ½�kF ; kF �; ð4Þ
by the difference of two integrals over domains

Da :ðk; k0Þ 2 ½�kF ; kF � � R; ð5Þ
Db :ðk; k0Þ 2 ½�kF ; kF � � ½�kF ; kF �; ð6Þ
see Fig. 1. In the above expressions we used the notation of the set
theory. As an example, if k is a member of set A, the notation k 2 A

is used. Similarly, � denotes the cartesian product of two sets, A n B
denotes difference between the two sets, and A [ B means the
union of the two sets. For more detailed description of set notion
see Ref. [11].

From (4)–(6) we have

F1DðrÞ ¼
Z

DRK ¼
Z

Da �
Z

Db; ð7Þ

in which we use the notationZ
Da ¼

Z Z
ðk;k0 Þ2Da

cosðkrÞ cosðk0rÞ
k02 � k2

dk0
� �

dk; ð8Þ

and similarly for Db and DRK . This method works correctly for 3D.
However, doing so for 1D requires caution due to the presence of
strong singularity at k ¼ k0 ¼ 0 in Eq. (8) for the domains Da and
Db. We show below that this method may not be directly applied
to the 1D case since the singularity at k ¼ k0 ¼ 0 gives a nonzero
contribution to the integrals.

Consider first
R Da, as given in Eqs. (5) and (8). The integral over

k0 is obtained with the use of formula 3.723.9 in [12]Z 1

�1

cosðrk0Þ
k2 � k02

dk0 ¼ p
k
sinðrkÞ; ð9Þ

which is valid for jrj; jkj > 0. ThenZ
Da ¼ �p

Z kF

�kF

cosðkrÞ sinðkrÞ
k

dk ¼ �pSið2kFrÞ; ð10Þ

where SiðxÞ ¼ R x
0 ðsinðtÞ=tÞdt is the sine-integral in the standard

notation, see [12].
The subtle point in the derivation of Eq. (10) is that the integral

on the left hand side of Eq. (9) does not exist at k ¼ 0, since for

k ¼ 0 and jk0j ! 0 the integrand diverges as 1=k02. Therefore Eq.
(9) in valid for all Da except in the small domain

D� : ðk; k0Þ 2 ½��; �� � ½��; ��; ð11Þ
with �! 0, for which the identity (9) can not be used. To overcome
this problem we isolate the domain D� out of the integration
domain:

R Da ¼ R Da� þ R D�, in which: Da� ¼ Da n D�. The contribu-
tion to the range function coming from D� has to be calculated
separately.

Turning to
R Db we note that there is a similar problem with the

singularity at k ¼ k0 ¼ 0, so that we again isolate D� out of the inte-
gration domain:

R Db ¼ R Db� þ R D� in which: Db� ¼ Db n D�. Let us
assume that the integral D� is finite, which is crucial for the calcu-
lations. Then from Eq. (7) we have (see Fig. 2)

Fig. 1. Schematic visualization of integration domain defined in (4)–(6). Left side of
equation: domain of integration in Eq. (3) (grey), right side: two domains of
integration proposed in Ref. [1], gray and dotted. Grey areas give nonzero
contribution to the range function while integral over dotted areas vanishes due
to symmetry.

Fig. 2. Schematic visualization of difference of the two domains shown in Eq. (12).
Grey and dotted areas have the same meaning as in Fig. 1. Black squares: strong
singularity at k ¼ k0 ¼ 0. Note that the two domains on the rhs still do not include
strong singularity.
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