Author's Accepted Manuscript

Effects of La³⁺-Zn²⁺ doping on the structure, magnetic, electrical, and dielectric properties of low temperature sintered Sr-hexaferrites

Long Peng, Lezhong Li, Xiaoxi Zhong, Yuebin Hu, Sanming Chen

PII: S0304-8853(16)31064-2

http://dx.doi.org/10.1016/j.jmmm.2016.10.146 DOI:

MAGMA62059 Reference:

To appear in: Journal of Magnetism and Magnetic Materials

Received date: 11 June 2016 Revised date: 11 October 2016 Accepted date: 28 October 2016

Cite this article as: Long Peng, Lezhong Li, Xiaoxi Zhong, Yuebin Hu and Sanming Chen, Effects of La³⁺-Zn²⁺ doping on the structure, magnetic electrical, and dielectric properties of low temperature sintered Sr-hexaferrites Journal Magnetism Magnetic Materials of and http://dx.doi.org/10.1016/j.jmmm.2016.10.146

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

Effects of La³⁺-Zn²⁺ doping on the structure, magnetic, electrical, and dielectric properties of low temperature sintered Sr-hexaferrites

Long Peng^{a*}, Lezhong Li^a, Xiaoxi Zhong^a, Yuebin Hu^b, Sanming Chen^a

^aSichuan Province Key Laboratory of Information Materials and Devices Application, College of Optoelectronic Technology, Chengdu University of Information Technology, Chengdu 610225, PR China

^bChengdu Industrial Vocational & Technical College, Chengdu 610213, PR China

*Corresponding author. *E-mail addressee*: penglong@cuit.edu.cn (Long Peng)

Abstract

The $Sr_{1-x}La_xFe_{12-x}Zn_xO_{19}$ (x=0-0.3) hexaferrites with Bi_2O_3 additive were prepared by microwave sintering method at low sintering temperatures, and their crystal structure, microstructure, magnetic, electrical, and dielectric properties were studied. The results show that the pure M-type phase is obtained for the ferrites with x≤0.2. With x further increasing to 0.3, the multiphase structure is inevitably formed, where the LaFeO₃ phase coexists with the M-type phase. In the single phase region, the varied magnetic, electrical, and dielectric properties with La^{3+} - Zn^{2+} doping amount are well explained by the occupancy effects of La^{3+} and Zn^{2+} in magnetoplumbite structure. It is suggested that the Zn^{2+} ions replace the Fe^{3+} ions at $4f_1$ site with x≤0.15, but the substitution of Zn^{2+} for Fe^{3+} occurs at 2b site preferentially when the La^{3+} - Zn^{2+} doping amount exceeds 0.15.

Keywords: Hexaferrites; Low temperature sintering; Magnetic properties; Electrical transport; Polarization

1. Introduction

Lack of high-performance gyromagnetic ferrites hinders the development of LTCF (low temperature co-fired ferrite) circulators and isolators, which have important significance for the miniaturization and integration of microwave communication system such as the "satellite-satellite", "satellite-space", and "satellite-earth" systems [1-4]. As we know, the gyromagnetic ferrites used to prepare the nonreciprocal LTCF devices need to meet the basic conditions: (1) can be sintered at low temperatures (≤900 °C) compatible with low temperature co-fired ceramics systems [2]; (2) can provide good electromagnetic performance, which satisfies the demands of devices [5]; (3) can realize self-biasing or have at least a weak dependence on external magnetic field worked as the substrates of circulators and isolators, especially at high frequency bands [3]. It is noteworthy that the BaFe₁₂O₁₉ and SrFe₁₂O₁₉ based hexaferrites can provide relatively high saturation magnetization, magnetic anisotropy field, Curie temperature, and excellent electromagnetic performance in parts of microwave and millimeter wave bands. It strengthens the attraction on investigating their low temperature sintering characteristics as the most promising gyromagnetic ferrites for the integrated microwave LTCF circulators and isolators undoubtedly [5-8]. However, the obtained low temperature sintered BaFe₁₂O₁₉ and SrFe₁₂O₁₉ based hexaferrites have not exhibited satisfactory performance for the actual device applications at present, such as the intrinsic coercivity, self-biased field, gyromagnetic efficiency, and electromagnetic loss [9-13].

In our previous works, the low temperature sintered Sr-hexaferrites with La^{3+} - Co^{2+} and La^{3+} - Cu^{2+} substitution were successfully prepared by microwave-assisted synthesis route, and their magnetic, electrical, and dielectric properties were found to depend on the doping amount intensively [13-15]. Electrical transport and dielectric behaviors of the Sr-hexaferrites are correlated with the hopping of electrons between Fe^{2+} to Fe^{3+} at octahedral sites (12k, 2a, and 4f₂) [16,17]. In fact, the substitution of Co^{2+} for Fe^{3+} occurs at the octahedral 2a and 4f₂ sites, and the Cu^{2+} ions replace Fe^{3+} ions at 4f₂ site too. Interestingly, the Zn^{2+} ions are suggested to replace the Fe^{3+} ions at tetrahedral 4f₁ site and trigonal

Download English Version:

https://daneshyari.com/en/article/5490548

Download Persian Version:

https://daneshyari.com/article/5490548

Daneshyari.com