
Author's Accepted Manuscript

Thermoelectric Power and DC Conductivity of Li-Cu ferrite

S.A. Mazen, H.A. Dawoud, N.I. Abu-Elsaad

DOI: http://dx.doi.org/10.1016/j.jmmm.2016.12.029

S0304-8853(16)31618-3

Reference: MAGMA62237

PII:

To appear in: Journal of Magnetism and Magnetic Materials

Received date: 30 July 2016 Revised date: 22 October 2016 Accepted date: 3 December 2016

Cite this article as: S.A. Mazen, H.A. Dawoud and N.I. Abu-Elsaad Thermoelectric Power and DC Conductivity of Li-Cu ferrite, *Journal of Magnetism and Magnetic Magnetic Materials* http://dx.doi.org/10.1016/j.jmmm.2016.12.029

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

Thermoelectric Power and DC Conductivity of Li-Cu ferrite

S.A. Mazen*, H.A. Dawoud, N.I. Abu-Elsaad

Magnetic Semiconductor Laboratory, Physics Department, Faculty of Science, Zagazig University, Zagazig, Egypt

ABSTRACT

Thermoelectric power (Seebeck coefficient S) and dc conductivity of Li-Cu ferrite in chemical formula $\text{Li}_{0.5\text{-}0.5x}\text{Cu}_x\text{Fe}_{2.5\text{-}.5x}\text{O}_4$ (where x=0.0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1.0) were studied in a wide range of temperature from 300 up to 930K. On the basis of the sign of Seebeck coefficient all the compositions of $0 \le x \le 0.9$ are n-type semiconductors except the sample of x = 1.0 (CuFe₂O₄) is p-type at room temperature. It was noticed that the sample of x = 1.0 converted to n-type at 350K, but for the sample of x=0.9, it was expected to convert from n-type to p-type at 240K. The Fermi energy at absolute zero $E_F(0)$ and the density of charge carriers (n) or (p) were determined. From the obtained results, the conduction mechanism of Li-Cu ferrite was discussed. Also, an energy band scheme was suggested.

Keywords

ferrite; electrical conductivity; thermoelectric power

1. Introduction

Lithium ferrites are low cost materials which have useful application in the field of microwave devices and memory core applications. Many authors [1-6] have discussed charge transport in ferrite materials. The modifications in the properties of Li-ferrite can be done by substitution of different ions such as divalent, trivalent and tetravalent, depending on the desired applications of the ferrite. Copper substituted Liferrite is technologically important as microwave latching devices and lithium batteries [7]. The spinel copper ferrite CuFe₂O₄ exists in tetragonal or cubic phase, depending on the heat treatment. The transition from tetragonal to cubic was investigated by several authors [8-10].

* Corresponding author.

E-mail address: dr.saidmazen@gmail.com (S.A. Mazen).

There are a few publications about the thermoelectric power of Li-Cu ferrite. Ravinder and Reddy [4] have studied the thermoelectric power of Li-Cu ferrite as a function of temperature and composition. Based on their results the composition was

Download English Version:

https://daneshyari.com/en/article/5490554

Download Persian Version:

https://daneshyari.com/article/5490554

<u>Daneshyari.com</u>