
Author's Accepted Manuscript

Thermodynamic Properties of Heusler Fe2-x Co_xMnSi

Masakazu Ito, Tatsuya Furuta, Keita Kai, Atsushi Taira, Keijiro Onda, Iduru Shigeta, Masahiko Hiroi

PII: S0304-8853(16)32707-X

DOI: http://dx.doi.org/10.1016/j.jmmm.2016.12.070

Reference: MAGMA62278

To appear in: Journal of Magnetism and Magnetic Materials

Received date: 22 October 2016 Revised date: 12 December 2016 Accepted date: 17 December 2016

Cite this article as: Masakazu Ito, Tatsuya Furuta, Keita Kai, Atsushi Taira Keijiro Onda, Iduru Shigeta and Masahiko Hiroi, Thermodynamic Properties o Heusler Fe2–x Co_xMnSi, *Journal of Magnetism and Magnetic Materials* http://dx.doi.org/10.1016/j.jmmm.2016.12.070

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

Thermodynamic Properties of Heusler $Fe_{2-x}Co_xMnSi$

Masakazu Ito^{a,*}, Tatsuya Furuta^a, Keita Kai^a, Atsushi Taira^a, Keijiro Onda^a, Iduru Shigeta^a, Masahiko Hiroi^a

^aDepartment of Physics and Astronomy, Graduate School of Science and Engineering, Kagoshima University, Kagoshima 890-0065, Japan

Abstract

We investigated the thermodynamic properties of Heusler compounds $\text{Fe}_{2-x}\text{Co}_x\text{MnSi}$ $(0.00 \le x \le 2.00)$. The specific heats $C_P(T)$ for compounds with $x \le 0.1$ exhibit a λ -type anomaly arising from spin rearrangements at T_R . With increasing x, T_R decreases linearly and vanishes at $x \sim 0.169$. The magnetic entropy, S_{T_R} , derived from the magnetic specific heat, $C_m(T)$, released at T_R decreases by increasing x. This means the canting angle of spins from the [111] direction decreases by the substitution of Fe atoms with Co atoms, based on the magnetic structure model of Fe₂MnSi proposed by Miles et al. For compounds with $0.5 \le x$, $C_P(T)$ in the low-T range can be reproduced by Debye T^3 law. The electronic specific heat coefficient decreases monotonically with x.

Keywords: Heusler compound; Specific heat; Magnetic ordering

1. Introduction

Full-Heuser compounds are alloys having chemical formula X_2YZ for which X and Y are transition metals and Z is a non-magnetic sp element. They belong to a material group that are attractive for their various interesting magnetic, electrical, and thermodynamic properties, such as the magnetic shape memory effect in the Ni-Fe-Ga[1] and Fe-Mn-Ga[2] systems, thermoelectricity in F-V-Al system[3], and a magnetocaloric effect in the Ni-Mn-In and Ni-Mn-Sn systems[4]. Half-metallicity is also another property that is expected to have applications in spintronics devices such as tunneling magneto-

Email address: showa@sci.kagoshima-u.ac.jp (Masakazu Ito)

^{*}Corresponding author

Download English Version:

https://daneshyari.com/en/article/5490597

Download Persian Version:

https://daneshyari.com/article/5490597

Daneshyari.com