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A B S T R A C T

Magnetic nanoparticle hyperthermia is a cancer treatment in which magnetic nanoparticles (MNPs) are
subjected to an alternating magnetic field to induce heat in the tumor. The generated heat of MNPs is
characterized by the specific loss power (SLP) due to relaxation phenomena of the MNP. Up to now, several
models have been proposed to predict the SLP, one of which is the Linear Response Theory. One parameter in
this model is the relaxation time constant. In this contribution, we employ a macrospin model based on the
Landau-Lifshitz-Gilbert equation to investigate the relation between the Gilbert damping parameter and the
relaxation time constant. This relaxation time has a pre-factor τ0 which is often taken as a fixed value ranging
between 10−8 and 10−12 s. However, in reality it has small size dependence. Here, the influence of this size
dependence on the calculation of the SLP is demonstrated, consequently improving the accuracy of this
estimate.

1. Introduction

In oncology, hyperthermia refers to the heating of organs or tissues
to temperatures ranging from 42 °C to 46 °C where it causes the death
of cancer cells [1]. One possible way to locally apply heat to cancerous
regions is by means of magnetic nanoparticle hyperthermia [2]. There,
magnetic nanoparticles (MNPs) are injected in the body, and subse-
quently guided towards the cancer cells. This can be achieved by
various mechanisms. They can for instance be directed by external
fields [3], or, alternatively the particles can be coated with a biological
marker which binds them to cancer cells [4]. Once the particles are at
the desired location, they are subjected to an alternating magnetic field
to induce a temperature increase in the particles and the tumor tissue.
The heat generated by MNPs is provided by the dissipated power of the
MNPs as they run through a hysteresis loop. This is quantified by the
specific loss power (SLP), also known as the specific absorption rate
(SAR) which is a measure of power dissipated per unit mass of the
magnetic material. The heating properties of the MNPs depend on
three major mechanisms. The first is called Néel relaxation [5], where
the magnetization within the MNPs is excited by thermal fluctuations

and irreversibly jumps over energy barriers due to the anisotropy of the
material. Next, in Brownian relaxation the MNPs as a whole rotate due
to their Brownian motion in their suspension. Finally, when the
externally applied fields are sufficiently large to suppress the energy
barriers between different anisotropy directions, a third, temperature
independent, mechanism exists [6]. Next to the temperature, the size,
the magnetic anisotropy and the saturation magnetization of the MNPs
also the amplitude and the frequency of the magnetic field determine
the relative strength of each loss mechanism. To gain further insight in
the different processes and their combined effect on the SLP, a
significant number of measurements have been carried out recently
using various experimental setups [3,4,7]. Furthermore, also a number
of increasingly complex analytical or numerical descriptions of the
physics behind these processes are available [5,8]. Specifically, the
theory behind the Néel relaxation mechanism is well established but
unfortunately the resulting equations can only be solved analytically in
specific limits, e.g. for very large energy barriers, and otherwise one has
to rely on numerical calculations. Recently, a macrospin model based
on the Landau-Lifshitz-Gilbert (LLG) equation has been employed to
investigate the dynamics of the MNPs when subjected to an externally
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applied magnetic field [9]. The LLG equation contains a phenomen-
ological damping term, whose size is determined by the Gilbert
damping constant [10], α, which accommodates for all loss mechan-
isms. The damping constant α is related to τ0, which provides a typical
relaxation time used in the description of the Néel relaxation process,
and is the inverse of an attempt frequency [11]. Usually, τ0 is described
as constant taking values between 10−8 and 10−12 s [7]. However, this
large range is inconvenient to accurately determine the losses related to
the hysteresis loop of MNPs and furthermore, τ0 has a size dependence
which is often neglected. In this contribution, the relation between τ0
and α is investigated. Based on a macrospin model [12], an empirical
relation is determined and subsequently used in the SLP calculations of
MNP samples with a lognormal size distribution [13].

2. Methods

2.1. Macrospin model

To investigate the magnetic dynamics of the MNPs, a model based
on the LLG equation is used [12]
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where m denotes the magnetization vector of the considered MNP,
normalized to the saturation magnetization m= M

Ms
, Heff is the effective

field acting on each MNP and takes into account the demagnetizing,
thermal, external and anisotropy field contributions [9], μ0 is the
vacuum permeability and γ = 1. 7595 1011 rad

Ts denotes the gyromagnetic
ratio.

The LLG equation is numerically integrated for an ensemble of
nanoparticles with the simulation tool Vinamax [9]. In all simulations,
single core magnetite MNPs are considered with magnetic material
properties Ms=446 kA/m, K=25 kJ/m³, at a temperature of 300 K. The
MNP concentrations are assumed to be sufficiently low to neglect the
dipolar interactions between the MNPs [11] and that the MNPs are
sufficiently small to consider them to be single domain particles [13].
In all simulations an ensemble of at least 10000 MNPs is studied with
easy axis orientations being randomly distributed. Either the 5th order
Dormand-Prince method or the 7th order Fehlberg method are used to
integrate the LLG equation. Both solvers use fixed time steps, which is
required for the implementation of the randomly fluctuating thermal
field [9]. Finally, for each simulation we carefully checked that an
appropriate time step was used.

In real MNP samples, the MNPs often have a lognormal size
distribution [13], as dictated by their production process [16]. Such
distributions are therefore considered here as well. Eq. (2) shows the
probability density function of the MNP radius r
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which can be interpreted as the distribution whose logarithm is
normally distributed with μ and σ being the mean radius and standard
deviation, respectively.

2.2. Magnetorelaxometry

Magnetorelaxometry is a method to characterize MNPs by measur-
ing the decaying net magnetic moment of the MNP sample after it has
been magnetized in an external field [17]. The decaying magnetic signal
is described by

M t M e( )= t
τ0

− (3)

where M0 denotes the magnetization of the sample at t=0 and τ the
effective relaxation time constant given by = +

τ τ τ
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τN and τB denote the Néel and Brownian relaxation time respectively.

For immobilized MNPs only the Néel relaxation mechanism is relevant.
Since the purpose is to attain the effect of the typical relaxation time τ0
used in the description of the Néel relaxation process, the Brownian
relaxation time will be no longer considered.

The Néel relaxation time

τ τ e=N
KV
k T0 B (4)

is mainly determined by the ratio between the energy barrier, given by
the product of the anisotropy constant K and the volume V=4πr3/3 of
the MNPs, and the available thermal energy, which is the product of the
Boltzmann constant kB, and the temperature T.

As mentioned earlier, τ0 is typically taken as a constant between
10−8 and 10−12 s. However, this quantity is size dependent as can be
seen from Eq. (5), derived by Brown [15], in the high barrier limit
KV k T≫ B
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With Vinamax, it is possible to simulate MRX experiments [11],
and the result of one such simulation is shown in Fig. 1. The green
symbols depict the relaxing signal of a sample consisting of MNPs with
a fixed radius of 7 nm. The black curve shows a fit to this data with an
equation of the form given by Eq. (3), allowing the extraction of τN from
these simulations. Because also the energy barrier and temperature are
known, τ0 can thus be obtained with the help of Eq. (4).

When a sample with a lognormal size distribution is considered, the
magnetic moment is no longer described by an exponentially decaying
function but is given by a weighted sum of such functions [11]:
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A typical signal for μ=7 nm and σ=0.1 is depicted in Fig. 1 in red. It
clearly exhibits a decaying magnetic moment that is no longer
described by a simple decaying exponential. Each lognormal distribu-
tion gives rise to a characteristic shape, which allows to experimentally
recovering the lognormal distribution of MNP samples from MRX data
[18].

2.3. Linear response theory

Linear response theory (LRT) is a theoretical model which describes
the dynamic response of an ensemble of MNPs to a time-varying
external field [14]. When a time-varying magnetic field
H t H ωt( )= cos ( )0 is applied with angular frequency ω and amplitude
H0 the magnetization response is given as follows:

Fig. 1. MRX simulation of 10000 MNPs with α=0.01 with fixed radius of 7 nm (green
symbols) or lognormal size distribution (red line). The black line shows the closest fit of
Eq. (3) to the data to extract τN from the simulation. (For interpretation of the references

to color in this figure legend, the reader is referred to the web version of this article.)
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