
Author's Accepted Manuscript

Influence of annealing temperature on the Dy diffusion process in NdFeB magnets

Sheng-qing Hu, Kun Peng, Hong Chen

PII: S0304-8853(16)30829-0

DOI: http://dx.doi.org/10.1016/j.jmmm.2016.11.111

Reference: MAGMA62186

To appear in: Journal of Magnetism and Magnetic Materials

Received date: 25 May 2016 Revised date: 21 October 2016 Accepted date: 19 November 2016

Cite this article as: Sheng-qing Hu, Kun Peng and Hong Chen, Influence o annealing temperature on the Dy diffusion process in NdFeB magnets, *Journal of Magnetism* and Magnetic Materials http://dx.doi.org/10.1016/j.jmmm.2016.11.111

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

Influence of annealing temperature on the Dy diffusion process in

NdFeB magnets

Sheng-qing Hu^{a,*}, Kun Peng^{b, a*}, Hong Chen^a

^a State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China

^b College of Materials Science and Engineering, Hunan University, Changsha, 410082, China

33203010@qq.com (Sheng-qing Hu)

kpeng@hnu.edu.cn (Kun Peng).

*Corresponding authors:

Abstract:

Sintered NdFeB magnets were coated with a layer of Dy metal using electron beam

evaporation method and then annealed at various temperatures to investigate the temperature

dependence of Dy diffusion process in NdFeB magnets. A Dy-rich phase was observed along the

grain boundaries after the grain boundary diffusion process, the diffusion coefficients of various

temperatures were obtained, the diffusion coefficients of Dy along the grain boundaries at 800°C

and 900°C were determined to be $9.8 \times 10^{-8} \text{cm}^2 \cdot \text{s}^{-1}$ and $2.4 \times 10^{-7} \text{cm}^2 \cdot \text{s}^{-1}$, respectively. The

diffusion length depended on the annealing temperature and the maximum diffusion length of

approximately 1.8 mm and 3.0 mm can be obtained after annealing at 800°C and 900°C for 8h.

Higher diffusion temperature results in the diffusion not only along the grain boundaries but also

into grains and then decrease in magnetic properties. The optimum annealing conditions can be

determined as 900°C for 8h. The coercivity was improved from 1040KA/m to 1450KA/m and its

magnetization has no significant reduction after the grain boundary diffusion process at the

optimum annealing conditions.

Keywords:

diffusion; grain boundary; magnetization; magnetic property

1. Introduction

1

Download English Version:

https://daneshyari.com/en/article/5490670

Download Persian Version:

https://daneshyari.com/article/5490670

<u>Daneshyari.com</u>