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A B S T R A C T

A semiclassical theoretical study on the property of the modulational instability of corresponding linear spin-
waves and the presence of nonlinear localized excitations in a discrete quantum ferromagnetic spin chain with
single-ion easy-axis anisotropy is reported. We consider the Glauber coherent-state representation combined
with the Dyson-Maleev transformation for local spin operators as the basic representation of the system, and
derive the equation of motion by means of the Ehrenfest theorem. Using a modulational instability analysis of
plane waves, we predict the existence regions of bright envelope solitons and intrinsic localized spin-wave
modes. Besides, with the help of a semidiscrete multi-scale method, we obtain analytical solutions for the bright
envelope soliton and intrinsic localized spin-wave mode. Moreover, we analyze their existence conditions, which
agree with the results of modulational instability analysis.

1. Introduction

The Modulational instability is a very fundamental topic in the
theory of the nonlinear wave [1–10]. Modulational instabilities are
dynamical instabilities, which are depicted by an exponential growth of
arbitrarily small fluctuations due to the interplay between dispersive
and nonlinear effects. In nonlinear lattice models, discrete modula-
tional instability is of elementary importance for the formation of
localized excitations, such as envelope solitons and intrinsic localized
modes [11,12]. In the last few decades, the discrete modulational
instability of plane waves in one-dimensional nonlinear oscillator
lattices has attracted a considerable deal of interest [13]. Kivshar and
Peyrard firstly pointed out that the modulational instability is a
possible mechanism for the generation of localized states in nonlinear
oscillator lattices [14]. And then, in Kivshar's another article, he
showed that the bright intrinsic localized mode only emerges in the
parameter domains where the oscillator lattice system exhibits mod-
ulational instability [15]. If modulational instability does not take place
in the system, then a dark-type localized mode may exist. Afterward,
Daumont et al. found that modulational instability of plane waves in
nonlinear oscillator lattices is the first step towards lattice vibration
energy localization. Indeed, the modulational instability is a potential
mechanism for generation of nonlinear localized modes [16]. Hence, it
is important to clarify the nature of the modulational instability for
better understanding of the generation of the envelope soliton and the
intrinsic localized mode in nonlinear lattices.

In Heisenberg spin chains, as a result of intrinsically intrinsic
nonlinearity of both spin-spin exchange coupling interactions and on-
site anisotropies, ferromagnetic lattice systems can provide tractable
candidates to study localized modes and modulational instability of
plane waves. Up to now, a great deal of attention has been paid to the
properties of nonlinear localized modes and modulational instability in
ferromagnetic chains. Initially, Lai et al. studied intrinsic localized
modes in a one dimensional ferromagnetic chain with first- and
second-nearest-neighbor exchange couplings, and found that the
modulation instability of the extended band-edge mode gives a possible
mechanism for the generation of resonance localized excitations from
extended modes [17]. Afterward, Nguenang et al. investigated modula-
tional instability of the nonlinear extended spin waves in a ferromag-
netic chain with biquadratic isotropic exchange interaction and easy-
plane single-ion anisotropy [18]. By this work, they putted out some
new features of some nonlinear localized modes in the discrete
ferromagnetic lattice system. Very recently, Kavitha et al. investigated
modulational instability and highly localized discrete breather modes
in a one-dimensional discrete weak ferromagnetic lattice with on-site
easy-axis anisotropy because of crystal field effect. They found that
Dzyaloshinsky–Moriya interaction and the on-site anisotropy affect
significantly the excitation of intrinsic localized modes, and the canted
ferromagnetic chain system with the antisymmetric nature can produce
the long-lived localized excitation [19]. And then, they also investigate
the modulational instability of plane carrier waves in a one-dimen-
sional ferromagnetic spin lattice with higher-order dispersive octu-
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pole–dipole and dipole–dipole coupling interactions [20]. Their results
showed that the introduction of long-range dispersive interactions is a
very efficient mechanism for generation long-lived intrinsic localized
mode excitations with the growth of high amplitude.

In this paper, we study the modulational instability and nonlinear
excitations in a discrete Heisenberg ferromagnetic spin chain with the
single-ion easy-axis anisotropy in the semiclassical limit. By making
use of Glauber's coherent state method combined with Dyson-Maleev
representation for spin operators, we the drive equation of motion of
the ferromagnetic lattice system, which is a discrete nonlinear equa-
tion. First, the modulational instability of a carrier plane wave in the
ferromagnetic lattice is studied analytically. A linear stability analysis is
carried out to predict under what conditions nonlinear localized modes
can appear. By means of the multiple-scale method combined with
semidiscrete approximation, on the other hand, we shall search for
localized solutions to the equation of motion. More details will be
revealed in the following sections.

2. The model and equation of motion

In general, the anisotropy is very important for the intrinsic
localization of spin waves in ferromagnetic chain with nearest-neighbor
interactions [17]. Especially, the anisotropy of ferromagnetic chains
plays a key role in the existence of intrinsic localized modes [21]. Here,
we will focus our considerations on a one-dimensional ferromagnetic
chain with single-ion easy-axis anisotropy, in which spin and spin are
coupled via nearest-neighbor isotropic exchange coupling interactions.
The Hamiltonian operator of the ferromagnetic system can be de-
scribed as

∑ ∑H J S S D S= − 2
→

∙
→

− ( ) ,
j

j j
j

j
z

+1
2

(1)

where S S S S
→

= ( , , )j j
x

j
y

j
z represents the local spin operator on lattice site

j, J( > 0) is the nearst-neighbor exchange interaction constants, and D
is the single-ion uniaxial anisotropy parameter. Here, the value of D is
positive so that the Z axis is an easy axis. Without loss of generality,
one can assume that all local spins align along the Zaxis direction when
the ferromagnetic spin lattice system is in the ground state.

For the purpose of obtaining the second quantization form of the
spin lattice model Hamiltonian, we may introduce the Dyson-Maleev
transformation for local spin operators in all lattice sites [22,23]
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where bj (bj
+) is local boson annihilation (creation) operator in site j, S

represents the magnitude of spin, and S S iS= ±j j
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convenience, the Planck constant has been taken as unit. With Eq. (2)–
(4), one can get a bosonlized Hamiltonian, which is
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where the ground-state energy of the spin lattice system has been
ignored for simplicity. Physically, this treatment is reasonable and
common.

For the sake of characterizing the components of quantum state of

the spin lattice system, we make use of the Glauber coherent-state βj

as a representation of the present lattice system [24]. In this repre-
sentation, the lattice system quantum state tΦ( ) can be taken to be a
product of the following form

∏t βΦ( ) = ,
j

j
(6)

with t tΦ( )|Φ( ) = 1. In principle, one can apply the Ehrenfest theorem
to drive the equation of motion on the expectation value of a operator
in the Schrödinger picture. Thus, doing a simple calculation can give
the equation of motion for the coherent-state amplitude, which is
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where ω JS D S= 4 + (2 − 1)0 . In the above equation, we can see clearly
that the discreteness and the intrinsic nonlinearity in the present
Heisenberg ferromagnetic spin lattice are fully included even though
this equation of equation is a classical analog of c-number equation.

3. Modulational instability analysis

In this section, we shall analyze the discrete modulational instabil-
ity of a constant amplitude solution to the equation of motion (7) under
a plane-wave perturbation. Furthermore, the feasibility of the localized
modes in the present system is certified by linear stability analysis
[25,26]. First, we look for an plane-wave solution of the form

β β e= ,n
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where β0 is a constant amplitude, q denotes the wave number of the
plane-wave, and ω corresponds to the frequency of the plane-wave that
follows a nonlinear dispersion relation, namely,
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Theoretically, a discrete modulational instability of plane-waves in
the present magnetic system can be explored through analyzing the
stability of the plane-wave amplitude as a function of very small
perturbation to linearizing the equation on the envelope function of
the plane carrier wave. Hence, we need to seek a solution of the form
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Inserting Eq. (10) into Eq. (7) and retaining only the linear terms
on δβn and δβ*

n will yield a linear differential equation, which reads
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In general, the above linear equation has a general solution with the
following form
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where Q and Ω stand for the wavenumber and the frequency of the
perturbation amplitude, respectively. Here, μ and ν are real constants.
Substituting Eq. (12) into Eq. (11), then one shall get the following
linear equations for the present lattice system
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The condition existence for non-trivial solutions to the above linear
equations can be depicted as the following second order equation on
the frequency Ω
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