Author's Accepted Manuscript

Synthesis, characterization and magnetic properties of NiFe_{2-x}Ce_xO₄ nanoribbons by electrospinning

Jianan Li, Panpan Jing, Xinlei Zhang, Derang Cao, Jinwu Wei, Lining Pan, Zhenlin Liu, Jianbo Wang. **Qingfang Liu**

PII: S0304-8853(16)30894-0

http://dx.doi.org/10.1016/j.jmmm.2016.10.113 DOI:

Reference: MAGMA62026

Journal of Magnetism and Magnetic Materials To appear in:

Received date: 30 May 2016 8 September 2016 Revised date: Accepted date: 20 October 2016

Cite this article as: Jianan Li, Panpan Jing, Xinlei Zhang, Derang Cao, Jinw Wei, Lining Pan, Zhenlin Liu, Jianbo Wang and Qingfang Liu, Synthesis characterization and magnetic properties of NiFe2-xCexO4 nanoribbons by electrospinning, Journal of Magnetism and Magnetic Materials http://dx.doi.org/10.1016/j.jmmm.2016.10.113

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

Synthesis, characterization and magnetic properties of NiFe_{2-x}Ce_xO₄ nanoribbons by electrospinning

Jianan Li¹, Panpan Jing¹, Xinlei Zhang¹, Derang Cao¹, Jinwu Wei¹, Lining Pan¹, Zhenlin Liu², Jianbo Wang^{1,3}, Qingfang Liu^{1*}

Abstract

NiFe_{2-x}Ce_xO₄ (*x*= 0-0.03) nanoribbons have been successfully fabricated using electrospinning technique and followed by calcining in air at 500 °C. The crystalline, morphologies and compositions of NiFe_{2-x}Ce_xO₄ nanoribbons are characterized by X-ray diffraction, selected area electron diffraction, transmission electron microscope, field emission scanning electron microscopy and energy dispersive X-ray spectroscopy (EDX). The results show that the components, mean crystallite sizes and morphologies change along with the content of Ce³⁺. A formation mechanism of NiFe_{2-x}Ce_xO₄ nanoribbons is proposed. The magnetic hysteresis loops of NiFe_{2-x}Ce_xO₄ nanoribbons reveals that the coercivity changes from 165 Oe to 64 Oe and saturation magnetizations change from 40.97 emu/g to 25.05 emu/g at room temperature. Morevover, the Mössbauer spectra of ⁵⁷Fe in NiFe_{2-x}Ce_xO₄ nanoribbons is discussed in detail. It is believed that this work will play important role in magnetic application with the advantage of excellent magnetic properties, efficient functionalization and relatively low cost.

Keywords: electrospinning, nickel ferrites, Ce-doped, magnetic properties, nanoribbons.

1. Introduction

One-dimensional (1D) nanostructures materials with the range of diameters from several micrometers to tens of nanometers have recently attracted much attention due to their unique physical and chemical properties spreading in many fields, such as biosensor [1], cancer therapy [2], drug delivery [3], air and water filtration [4], and micro-nano-electrics devices [5] etc. 1D nanostructures has be fabricated by many methods, including aluminum oxide (AAO) template [6], sol-gel method [7] and electrospinning technique [8]. Among these synthesis techniques, electrospinning technique has been widely utilized, as it owns the advantages of simple operation, high production rate and low cost [9], and it can be used to fabricate much

¹Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzho u University, Lanzhou 730000, People's Republic of China.

²Analysis and researching center of Gansu province, Lanzhou 730000, People's Republic of C hina.

³Key Laboratory for Special Function Materials and Structural Design of the Ministry of the Education, Lanzhou University, Lanzhou 730000, People's Republic of China.

^{*}Corresponding author: Qingfang Liu, Telephone: +86-0931-8914171. E-mail address:luqf@lzu.edu.cn

Download English Version:

https://daneshyari.com/en/article/5490727

Download Persian Version:

https://daneshyari.com/article/5490727

Daneshyari.com