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A B S T R A C T

In this study, critical behavior of low dimensional magnetic systems as cyano-bridged Tb(III)-Cr(III) bimetallic
assembly was investigated with the mixed spin 3- spin 3/2 Ising model. The mixed spin Ising model is simulated
with Cellular Automaton cooling and heating algorithms on one-dimensional lattices in periodic boundary
conditions. The Ising model Hamiltonian includes only antiferromagnetic nearest-neighbor interaction (J > 0).
The mixed spin system behaves like the isolated one-dimensional chain for zero magnetic field (h H J= / = 0). In
the presence of the magnetic field, the magnetization is calculated using zero-field cooling (ZFC ) and field
cooling (FC) processes. The one-dimensional Ising model results are compatible with the cyano-bridged Tb(III)-
Cr(III) bimetallic quasi-one dimensional assembly (([Tb(H2O)2(DMF)4 {Cr(CN)}6]· H2O
(DMF=dimethylformamide)) results.

1. Introduction

Low dimensional magnetism has been a subject of studies for many
years. In the last decades, new materials have been synthesized to
obtain high temperature magnetism. One of these materials are cyano-
bridged 4f–3d assemblies.f- block lanthanide ions having large aniso-
tropic magnetic moments yield hard magnets and long-range magnetic
order in solids [1–4]. Some of cyano-bridged 4f–3d assemblies also
exhibit field-induced magnetic relaxation [3], cooling-rate dependent
magnetism [5], photo-induced magnetization [6], and humidity re-
sponse [7]. Interactions between the ions/molecules determine the
electronic and magnetic properties as well as dimensionality of the
assembly. Guo et al. synthesized cyano-bridged Tb (III) -Cr (III)
bimetallic assembly ([Tb(H2O)2(DMF)4Cr(CN)6]· H2 O
(DMF=dimethylformamide)) [1]. They introduced that antiferromag-
netic interaction between Tb (III) and Cr (III) ions represented by S=3
and σ=3/2, respectively, leads to ferrimagnetic structure in the quasi-
one dimensional zig-zag chain. A transition to 3D long-range magnetic
order from the ferrimagnetic Tb (III) -Cr (III) chains occurs at TC=5 K
with the weak interchain interactions. Therefore, they draw attention to
the requirement of the further experimental and theoretical studies to
illuminate the magnetic interaction mechanism.

The aim of this study was to detect the interaction mechanism of
the one-dimensional spin 3 - spin 3/2 chain. For this purpose, the one-
dimensional spin 3 - spin 3/2 Ising model in its simplest form is
simulated using Cellular Automaton (CA) and the results are compared
with the experimental results to clear up the magnetic interaction
mechanism. The one-dimensional Ising model was first introduced by

Ernst Ising in 1925. The model established by Ising as a chain of spins,
each spin interacts only with its nearest-neighbors, and an external
field. At non-zero temperature, the model does not have any phase
transition. Correlation lenght becomes infinite at H=T=0, which is the
critical point of the model [8]. However, magnetic order can emerge
with broken one-dimensionality due to orbital degeneracy or quasi-one
dimensional geometry [1,9–14].

The mixed spin Ising model is a simple model to study ferrimagnet-
ism. Therefore, a variety of spin mixtures, such as spin 1- spin 1/2 [15–
22], spin 1 - spin 3/2 [23–25], spin 1 - spin 5/2 [26], spin 2 - spin 1/2
[15], spin 2 - spin 3/2 [27,28], spin 2 - spin 5/2 [29–34], spin 1/2 -
spin 3/2 [15,21,35], spin 1/2 - spin 5/2 [15], spin 3/2 - spin 5/2 [17],
and spin 3 - spin 3/2 [36] have been studied frequently by simulation
and numerical methods. Creutz Cellular Automaton (CCA) algorithm
and its improved versions are efficient to study the critical behaviors of
the Ising model [36–40]. The CCA algorithm was first introduced by
Creutz [41]. It is a microcanonical algorithm interpolating between the
conventional Monte Carlo and the molecular dynamics techniques.

In this study, magnetization (M), susceptibility (χ), internal energy
(U), and specific heat (C/k) are calculated on one-dimensional chain of
linear dimension L=100, 500, 1000, 5000, 10,000, 50,000, and
100,000 with periodic boundary conditions. First, 1D behavior and
the long-range order (LRO) of the mixed spin system have been
investigated with temperature variation of the thermodynamic quan-
tities in zero external field (h H J= / = 0 ) and external field (h ≠ 0)
using the Cellular Automaton cooling algorithm. At the same time, the
thermodynamic quantities are calculated via field cooling (FC) and zero
field cooling (ZFC) processes for h0 ≤ ≤ 3.4. For mixed spin systems,
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hysteresis curves are obtained at several temperature values. The
blocking temperature (TB) behavior and temperature dependence of
the coercive field (HC) were investigated by taking advantage of
hysteresis curves. The outline of this paper is as follows: In Section
2, the model and the formalism are given. In Section 3, the results and
the discussions are presented. A conclusion is given in Section 4.

2. Model

The mixed-spin Ising model hamiltonian is given by

∑ ∑H J S σ H S σ= − ( + )I
ij

i j
i

i i
< > (1)

where Si=0, ± 1, ± 2, and ± 3 and σj= ± 1/2, ± 3/2. ij denotes the
summation over all nearest -neighbor spin pairs in a one-dimensional
lattice. J is the bilinear interaction (J > 0) between S and σ. H is the
external field. The lattice is established from the two interpenetrating
linear chains named as sublattice A and sublattice B. S and σ spins are
located in sublattice A and sublattice B, respectively (Fig. 1). Three
variables are associated with each site of the lattice. The values of these
variables are determined in each site from its value and those of its
nearest- neighbors at the previous time step. The updating rule, which
defines a Cellular Automaton, is as follows: Of the three variables on
each site, the first one is the Ising spin, Ai or Bj. Its values may be Ai=0,
1, 2, 3, 4, 5, and 6 for S and Bj=0, 1, 2, and 3 for σ. S and σ can be
defined as Si=(Ai-3) and σj=(2 Bj-3)/2 using the Ising spin variables in
Eq. (1). The second variable corresponds the momentum variable
which is conjugate to the spin (the demon). The kinetic energy
associated with the demon, HK, is an integer and it is equal to the
change in the Ising spin energy (-dHI) for any spin flip.

dH H H= −I I
t

I
t+1 (2)

Kinetic energy values lie in the interval (0, m) where m takes a different
value for each h. For example, the greatest value of the dH I equals −24
for J=1 and H=1. In those terms, m equals 48.

The total energy (TE) which is conserved is given in the following
form:

TE H H= +I K (3)

The third variable provides a checkerboard row style updating and
so it allows the simulation of the Ising model on a cellular automaton.
The black sites of the checkerboard are updated and then their color is
changed into white; white sites are changed into black without being
updated. The updating rules for the spin and the momentum variables
are as follows: For a site to be updated its spin is changed to one of the
other 6 (3) states with 1/6 (1/3) probability for S (σ) and the change in
the Ising spin energy dHI is calculated. If this energy change is
transferable to or from the momentum variable associated with this
site, such that the total energy TE is conserved, then this change is done
and the momentum is appropriately changed. Otherwise, the spin and
the momentum are not changed. For example, dHI equals 24 in the
case of σj

t=− 3
2 , S = − 3i

t , and σ = −j
t
+1

3
2 . Si

t+1 can take one of the Si=3,

2, 1, 0, −1, −2, and −3 values at t+1 time step If the Si
t+1 takes the value

of 3, the 24 unit energy is transferred to the system as the kinetic
energy.

The system temperature for a given total energy is obtained from
the average value of the kinetic energy, which is given by

E
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(4)

where E=HK. The expectation value in Eq. (3) is average over the
lattice and the number of time steps.

The field cooling (FC) process and the zero-field cooling (ZFC)
process for Tb (III)-Cr (III) are carried out using the cooling and the
heating algorithms of CA [36–40]. The cooling and the heating
algorithms are divided into two basic parts, the initialization procedure
and the taking of measurements. In the initialization procedure, firstly,
all the spins in the lattice sites take ferrimagnetic ordered structure
(↑(3), ( − ))↓ 3

2 ) and the kinetic energy is given to a certain percentage of
the lattice via the second variables in the black sites such that the
kinetic energy of the site is equal to the change in the Ising spin energy
for any spin flip. The values of the kinetic energy per site is set to obtain
disordered spin configuration for zero field at high temperature. This
configuration is run during the 20000 cellular automaton time steps. In
the next step, the last configuration in the disordered structure at high
temperature was chosen as a starting configuration for the FC and ZFC
simulations. Rather than resetting the starting configuration at each
energy, it was convenient to use the final configuration at a given
energy as the starting point for the next.

2.1. FC and ZFC processes

In the measurement step of the FC algorithm, the last configuration
of the initialization procedure in the disordered structure is taken as a
starting configuration. The spin system is cooled for a value of non-zero
field (h≠0). During the cooling cycle, a certain amount of energy per
site are subtracted from the lattice through the second variable (HK)
after the 2000000 cellular automaton steps. In the zero-field cooling
process (ZFC), the initial configuration in the disordered structure is
used as a starting configuration for the cooling run at zero-field (h=0).
The last configuration at low temperature of the cooling process is
taken as a starting configuration for the heating run of the ZFC. Then
the spin system is heated for a value of non-zero field (h≠0). During the
heating cycle, a certain amount of energy per site is given to the lattice
through the second variable (HK) after the 2000000 cellular automaton
steps. These energy amounts are determined considering the dHI

values for the possible spin configurations. Thus, the whole energy is
used by the spin system. As a result, the spin system does not contain
the remnant energy, which affects the temperature measurement.

3. Results and discussions

All simulations were carried out using the cooling and the heating
algorithms improved from CCA for the one-dimensional spin 3 - spin
3/2 Ising model. The thermodynamic quantities (the order parameter
( M ), the susceptibility (χ), the internal energy (U), and the specific
heat (C/k)) were computed over the lattice and over the number of time
steps (2000000) after the discard of the first 100000 time steps during
the development of the cellular automaton. Thus, the values of the
thermodynamic quantities correspond to the equilibrium average
values. The calculations were repeated by field cooling (FC) and the
zero-field cooling (ZFC) processes on one-dimensional lattices with the
linear dimensions L=100, 500, 1000, 5000, 10000, 50000, and 100000
for periodic boundary conditions.

The thermodynamic quantities are calculated from

∑ ∑M
N

S
N

σ= 1 + 1

i
i

j
j

(5)

∑ ∑U
H

S σ h S σ= 1 (( ) − ( + ))
ij
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i
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σi-1 Si σi Si+1 σi+1Si-1

Fig. 1. One-dimensional lattice in periodic boundary conditions. Sublattice A and B
generate the one-dimensional lattice. Sublattice A (B) is occupied by S (σ ).
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