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A B S T R A C T

The ground-state magnetic phase diagram is calculated within the Hubbard and s-d exchange (Kondo) models
for square and simple cubic lattices vs. band filling and interaction parameter. The difference of the results
owing to the presence of localized moments in the latter model is discussed. We employ a generalized Hartree-
Fock approximation (HFA) to treat commensurate ferromagnetic (FM), antiferromagnetic (AFM), and
incommensurate (spiral) magnetic phases. The electron correlations are taken into account within the
Hubbard model by using the Kotliar-Ruckenstein slave boson approximation (SBA). The main advantage of
this approach is a correct qualitative description of the paramagnetic phase: its energy becomes considerably
lower as compared with HFA, and the gain in the energy of magnetic phases is substantially reduced.

1. Introduction

Magnetic properties of strongly correlated transition-metal systems
and their relation to doping, lattice geometry and band structure are
still extensively investigated. The general result of these investigations
is the existence of first-order transition between various commensurate
and incommensurate magnetic states which invokes a phase separation
(first discussed by Visscher [1]).

To describe the properties of such systems one uses many-electron
models like the Hubbard, s-d exchange (Kondo) and Anderson lattice
models. These are widely applied, e.g., for high-Tc cuprates and rare
earth compounds. There exist some relations between these models in
various parameter regions. The problem of local moments formation, e.
g. within the Hubbard model, is very difficult and still under investiga-
tion [2]. On the other hand, in the s-d exchange model the localized
moments (spins S) are explicitly present in the Hamiltonian (although
they are screened in the Kondo regime).

In the present paper we perform an investigation of the magnetic
phase diagram of the Anderson-Kondo lattice model for the square and
simple cubic lattices including the phase separation, as well as non-
collinear magnetic ordering, and trace these relations. We treat the
influence of inter-orbital interaction on the spiral state formation, the
difference of the Hubbard (one-orbital) and Anderson-Kondo lattice
(two-orbital) models results being considered.

2. Theory

The theoretical investigation of spiral formation in itinerant sys-
tems is generally based (in minimal variant) on the non-degenerate
Hubbard and Anderson models. Within the Hubbard model
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the itinerant electrons demonstrate both transport and interaction
induced magnetic properties. Here the matrix elements of the electron
transfer are t t= −ij for the nearest neighbors (we assume t > 0), d d,iσ iσ

†

are the electron creation and annihilation operators, respectively, i is
the site number, σ = ↑ , ↓ is the spin projection, the last term being
responsible for the on-site Coulomb interaction of d-electrons,
n d d=iσ
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In the case of the Anderson model transport and magnetic proper-
ties are separated between different systems, s and d correspondingly:
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c c,iσ iσ
† is creation/annihilation electron operator in itinerant (‘s-elec-

tron’) state at site i. ϵd is the energy of localized (‘d-electron’) electron
state, V is on-site s-d hybridization providing the coupling between
these subsystems. The total electron concentration in the system is
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n n n= +s d , where n c c= ∑ 〈 〉s σ iσ iσ
† and n d d= ∑ 〈 〉d σ iσ iσ

† are the occupa-
tion numbers for itinerant and localized states respectively.

Provided that the d-level is well below the Fermi energy and
Coulomb interaction is sufficiently large (V| |⪡ϵ − ϵdF , U), this model
can be reduced by the Schrieffer-Wolf transformation [3] to the s-d
exchange model with spin S = 1/2 and the negative exchange para-
meter

I V U= [1/(ϵ − ϵ ) − 1/( + ϵ − ϵ )],d d
2

F F (3)

where ϵF is the Fermi level. The Hamiltonian of the latter model reads
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Si is localized spin operator, σ→σσ′ stands for Pauli matrices.
We consider ferromagnetic and antiferromagnetic, as well as spiral

incommensurate magnetic order, with the magnetization
c d σ c dm = ∑ 〈( , ) → ( , ) 〉i

s d
σσ iσ σσ iσ

,
′

†
′ ′ being modulated in the xy-plane with

the wave vector Q [4]. After local rotation in spin space matching the
average magnetization direction at different sites we have a hopping
matrix, non-diagonal with respect to spin, t δ t→ij σσ ij

σσ
′

′ [5].
The saddle-point expression for the spiral state grand canonical

potential (per site) Ω has the form

Ω Ω Ω= + ,f bg (5)

where Ωf is a contribution from effective fermion Hamiltonian f
describing their motion in the ground state in some effective field,
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where E k( )ν are eigenvalues of f , f E θ μ E( ) = ( − ) is the Fermi
function at T=0, μ is the chemical potential, N is the lattice site
number. Ωbg is ‘inner’ effective field (‘background’) contribution to the
grand canonical potential.

Within the Hubbard model we have
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where
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is the bare electron spectrum. The concrete expressions for the
spectrum renormalization factors z2σ, λσ and Ωbg depend on the
approximation employed.

The resulting wave vector Q is determined by minimization of Ω
over various spiral states at fixed μ which allows to take into account
the phase separation possibility [4,6].

2.1. Hartree-Fock approximation

The generalized HFA for the Coulomb interaction in d-subsystem
reads
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The main shortcoming of HFA is the account of contributions of singly
and doubly occupied states to n n≡ 〈 〉σ

d
i σ
d
, in the equal way, which

becomes incorrect at sufficiently large U.
Correlation-induced band narrowing is here absent, z = 1σ
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− in Eq. (7),
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In the case of the Anderson model we have

∑ ∑

∑

e δ e δ c c V c d d c

Un d d

k k= ( ( ) + ( ) ) + ( + )

+ (ϵ + ) ,
σσ

σσ σ σ σ σ
σ

σ σ σ σ

σ
d d σ σ σ

k
k k

k
k k k k

k
k k

f
′

+ ′ − ,− ′
†

′
† †

,−
†

(12)

so that two types of mixing are present: the hybridization V of s- and d-
systems and spin flip terms proportional to e k( )− .

2.2. The account of correlations: slave boson approximation

Besides HFA, we apply SBA [7] to the single-band Hubbard model.
The idea of this approximation is extension of configuration space. This
duplicates the standard description based on the Slater determinant
wave functions (related to operators c, c†) by using the boson operators
ei, piσ , di and their conjugates which correspond to empty, singly
occupied, and doubly occupied states respectively. The bosonic space
construction is realized by requiring the presence of exactly one boson
at any time,

e e p p p p d d+ + + = 1.i i i i i i i i
†

↑
†

↑ ↓
†

↓
†

(13)

Any on-site transition operator (Hubbard X operator [10]) has its
counterpart in the slave boson language, e.g., X e p∼i

σ
i iσ

0 † for any
site i, being the projection operator onto the corresponding sub-
space. The exact coherence of fermion and boson systems is established
by the replacement [8]
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(2)) being an operator equal to unity on the subspace defined by
the equation d d p p+ = 1i i i σ i σ
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,− ) needed to repro-
duce HFA results at small U within the saddle-point approximation [7].
The consequence of this coherence is the connection of site occupation
numbers in terms of fermions and bosons,
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The Hubbard on-site interaction becomes diagonal in the boson
representation: Un n UX Ud d= =i i i i i↑ ↓

22 † . Within the saddle-point ap-
proximation, the bosonic operators are replaced by site-independent c-
numbers e, pσ , d. This yields an improvement of the Hartree-Fock
approximation, so that the corresponding effective field can be inter-
preted as a result of average many-electron site amplitudes satisfying
Eq. (13). The partial electronic concentrations are parametrized by
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The subband narrowing is the c-number function of extremal
bosonic fields,
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The grand canonical background potential has the form
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The impact of the occupation of site states on electron states manifests
itself in two types of renormalizations of bare spectrum: (i) narrowing
of the bare spectrum, similar to the Hubbard–I approximation [11],
which is specified by the factor z ≤ 1σ

2 , (ii) the additional energy shift λσ
which is an analogue of the Harris–Lange shift [12]. Both these
quantities are essentially spin dependent, which allows one to study
the magnetic states formation. Unlike HFA, in the slave-boson
approach λσ cannot be expressed in terms of n and m only and is
obtained from the saddle-point equation as
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