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A B S T R A C T

A method for determining magnetic anisotropy parameters of a thin single-crystal film on vicinal (111)
substrate as well as substrate miscut angles from angular dependence of ferromagnetic resonance field has been
proposed. The method is based on the following: (i) a new approach for the solution of the system of nonlinear
equations for equilibrium and resonance conditions; (ii) a new expression of the objective function for the fitting
problem. The study of the iron silicide films grown on vicinal Si(111) substrates with different miscut angles
confirmed the efficiency of the method. The proposed method can be easily generalized to determine parameters
of single-crystal films grown on substrates with an arbitrary cut.

1. Introduction

Epitaxial ferromagnetic films and various multilayer structures
grown on single-crystal substrates are widely studied because of
prospects of their application in spintronic devices [1,2]. Particular
attention has recently been focused on the study of magnetic films
grown on the vicinal cuts of Si(111) single-crystal substrates. For these
substrates, methods of creating stepwise surfaces providing a high
accuracy of the step width and step height are well developed [3,4].
This offers the possibility to control the magnetic properties of the films
in a wide range by varying the miscut angle of the vicinal Si(111)
surface in a narrow range [5,6]. In this context, methods for precise
determining magnetic anisotropy parameters of the thin films [7]
assume greater importance, among which ferromagnetic resonance
(FMR) is a convenient and powerful technique [8].

Recently, we have pointed to the high sensitivity of the FMR
technique to small miscut angles of a vicinal (111) surface in single-
crystal thin films [9]. The possibility of azimuthal and polar miscut
angles determination from FMR field angular dependences was
demonstrated. The aim of this work is to describe in more detail our
developed method for determining magnetic anisotropy parameters of
a thin film and substrate miscut angles as well as the new approaches
realized in it.

2. Theoretical background

Let us consider a thin film in an external in-plane magnetic field H.
The equilibrium direction of the magnetization M and the ferromag-
netic resonance condition for a thin-film sample can be obtained from
the free energy density expression of the system

F θ ϕ M H ϕ ϕ θ F θ ϕ( , ) = − cos( − )sin + ( , ),s H
a (1)

where the first term of Eq. (1) is the Zeeman energy contribution, and
the second term is the magnetic anisotropy energy contribution. In the
coordinate system xyz where the z axis coincides with the film normal,
θ denotes the polar angle between the magnetization and the z axis,
while φ and φH correspond to the azimuthal angles of M and H
respectively, measured with respect to the x axis. Ms is the saturation
magnetization. For a single-crystal thin ferromagnetic film deposited
on a vicinal (111) surface with a small miscut angle δ (a model of the
film is shown in Fig. 1), the density of the magnetic anisotropy energy
can be written as [9]
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Here, the first term describes the energy contribution from the
demagnetizing field of the film. The second term describes the energy
of the uniaxial perpendicular anisotropy with the constant K⊥. This
magnetic anisotropy is associated with the symmetry breaking at the
film surface and at the interface between the film and the substrate [7].
The following two terms of Eq. (2) describe the energies of the
unidirectional (with constant K1) and the uniaxial (with constant K2)
magnetic anisotropies, which fieldsHk1 andHk2 lie in plane of the film
and are directed at angles φ1 and φ2 respectively (Fig. 1b). The
remaining terms of the expression are related to the magnetocrystalline
cubic anisotropy with the constant K4 and the orientation φ4 of the
[110]′ crystallographic direction (see Fig. 1).

In low-dimensional systems such as thin films, a shape anisotropy
energy is usually the dominant term in the total magnetic anisotropy
energy. The shape anisotropy is the main reason of in-plane orientation
of the magnetization in the sample. The reorientation of the sponta-
neous magnetization from the film plane to the normal because of the
surface anisotropy is possible only for ultrathin films with thicknesses
of a few atomic layers [10]. Therefore, when the film is magnetized by
the in-plane external magnetic field, the equilibrium angle θ equals π/
2.

Using the Smith and Suhl formula [11,12], the ferromagnetic
resonance equation and equilibrium condition can be written as follows
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where f0 =ω0/2π is the microwave pump frequency, and γ is the
gyromagnetic ratio. The partial derivatives of Fϕϕ

a , Fθθ
a , Fθϕ

a , and Fϕ
a have

to be taken at the equilibrium position of the magnetization vector, that
is, for angles θ=π/2 and φ=φM, for which the total free energy density
F has its minimum value.

In practice, methods for determination of model parameters by
means of FMR are based on one or other numerical procedure that
allows to approximate the experimental angular dependence H ϕ*( )R H by
the theoretical curve HR(φH), which is calculated from the nonlinear
Eqs. (3) and (4). The practical realization of such a procedure faces two
problems that influence both the accuracy and the reliability of the
obtained results.

The first problem is directly related to the realization of an
algorithm for simultaneous solution of the nonlinear equations for
equilibrium and resonance conditions. When modeling the resonance
field prior knowledge of the external field is required to calculate the
equilibrium direction of M. The solution of this problem with a large
number of unknown parameters for the considered here model leads
not only to a long calculation time but also to an emergence of errors
that are difficult to control. We suggest a quite simple solution of this
problem, which can be used in all cases when a magnetization vector
and an external magnetic field lie in the same plane. Let us first rewrite
the system of the nonlinear Eqs. (3)–(4) as
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Fig. 1. The model and the orientation scheme of the crystallographic plane (111) of the
single-crystal film with respect to its surface (a). Notations used in the phenomenological
model of the thin film (top view) (b).
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Fig. 2. Dependences of the resonance filed HR and FMR linewidth ΔH on the sweeping
magnetic field direction φH: (a) sample 1, (b) sample 2, (c) sample 3. Symbols
correspond to the experimental measurements. Solid lines are the theoretical calculations
for the model of a film on the vicinal surface with δ‡0, while dashed lines show the
theoretical results for the case of singular surface (δ=0°).
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