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A B S T R A C T

New law of the approach to magnetic saturation is proposed based on scaling in ferromagnets with random
magnetic anisotropy. This law is consistent with the known laws derived within perturbation theory in extreme
cases, but it describes the transition mode between the power-low asymptotic regimes better. The improved law
is proper for reliable fitting the approach magnetization to saturation in nanocrystalline and amorphous
ferromagnets.

1. Introduction

Initially, the use of the law of approach to magnetic saturation
(LAMS) was experimental determining of saturation magnetization by
extrapolation of empirical LAMS expressions to the infinite field [1].
Since the publication of Akulov's paper [2], LAMS became the method
for determining the local magnetic anisotropy energy (magnetic
anisotropy energy of crystallites) in polycrystalline ferromagnetics.
For the structural defect size being comparable or smaller than the
width of the domain wall, the consideration of exchange interaction
between the structurally uniform volumes is important. The first LAMS
taking into account exchange interaction was derived by Brown [3].
Due to the competition between magnetic disorder and magnetic order
caused by the exchange interaction, the LAMS is closely associated with
the magnetic correlation length which depends on the applied magnetic
field RH =(2 A/MsH)1/2, where A is an exchange stiffness constant, Ms

is the saturation magnetization and H is the applied field. The state of
nonuniform magnetization with magnetic correlations with specific
length RH is known as magnetization ripple [4–6]. The magnetic
correlations were taken into account by Néel, Kronmüller, Schlömann
and Malozemoff [7–12] to derive the certain LAMS (usually presented
by specific power law M~H-n) referred to the specific structural defect.
It was noticed by Ignatchenko and Iskhakov that unique relationship
between specific LAMS expression with a specific structural defect
cannot be considered as reliable, because one certain LAMS may
correspond to a variety of structural defects [13,14]. Using the random
field theory Ignatchenko, Iskhakov [13,14] and Chudnovsky [15,16]

have shown that the specific form of LAMS refers exceptionally to the
correlation function or the spectral density of random magnetic
anisotropy. It was found that the LAMS in all the types of media with
random magnetic anisotropy with monotonically decreasing correla-
tions are characterized by the following general behavior. Above a
specific exchange correlation field HR =2 A/MsRс

2, M(H) follows to
Akulov's LAMS (M~H−2), and below it the power-law M~H-n with an
exponent n < 2 depending on the spatial dimension of the random
anisotropy inhomogeneity holds [13–15,17]. Thus, it was shown that
monitoring this change in power mode of the LAMS can be used to
determine the exchange field HR. The HR values supplemented by
independent measurements of A and Ms were used to study the
structural correlation lengths in some amorphous alloys [14,18–23].

2. Micromagnetics

Let us describe the background and the basic results on micro-
magnetics briefly concerning LAMS. Nonuniform orientation of local
easy magnetization axis (random magnetic anisotropy) of any nature
(crystallographic, magnetoelastic etc.) results in the specific state with
nonuniform magnetization – stochastic magnetic structure in nano-
crystalline magnet. The LAMS in ferromagnets with stochastic mag-
netic structure is directly determined by the variance (dm) of reduced
transverse magnetization component (m x M x M⎯→(⎯→) =

⎯→
(⎯→)/ s):

M H M d H( ) = (1 − ( )),s m (1)

The key characteristic of stochastic magnetic structure is the
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correlation function of magnetization C r ⃗( )m or the spectral density
S k(
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According to [13,14,16] the variance of magnetization dm ≡ Cm(r
=0) or more precisely its major term in perturbation theory is

determined by spectral density S k(
⎯→

) or by correlation function C r ⃗( ) of
local easy magnetization axis:
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where K is a constant of local magnetic anisotropy,
k R MH A= 1/ = ( /2 )H H

1/2 is a wave vector of exchange magnetic correla-
tions and RH is their correlation length. If we use exponential decay for
correlation function C r ⃗( ) of local easy magnetization axis e r R− / c, the
result for isotropic 3-d media is:

( )d
aH

H H H
= ( )

+
.m

a

R

2

1/2 1/2 1/2 3 (4)

Here H K M= 2 /a s is a local magnetic anisotropy field, а is a coefficient
equal to 1/151/2 for uniaxial anisotropy, H A M R= 2 /R s c

2 is an exchange
field, Rc is a correlation length of local easy magnetization axis. There is
transition between two power-law regimes – above and below HR:
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In the log-log plot dm versus H it is observed as two different
angles of two linear parts – above and below HR (see Fig. 1). If we
choose another monotonically decreased function C r ⃗( ) in Eq. (3), then
we get new expression for d H( )m , but the asymptotic power laws remain
to be the same.

3. The problem

Investigators have no exact C r( ) from the experiment. Therefore, it is a
problem to select the LAMS that should be used for the fitting of
experimental approach to saturation data, but we can try to compare the
quality of fittings by different LAMS expressions (for example derived by
using С(r) = exp (-r/Rc) and С(r) = exp (-(r/Rc)

2) [22,24,25]). In this
respect, after corresponding data processing the authors in [22,24,25] have

determined a better correlation function C r( ). We will show that LAMS
being derived using (4) does not fit experimental transition behavior
between extreme power laws of approach to saturation. In the experimental
data processing using LAMS analysis of plot dlg m versus Hlg can be used
instead of fitting. However, in a typically practical case, when available
experimental data are in the intermediate range between the asymptotic
power modes, the procedure cannot be carried out.

In the paper we propose a new LAMS that describes the experi-
mental approach to saturation magnetization curves in the intermedi-
ate region between the asymptotic power modes much better than the
previous LAMS expressions. This feature makes the law suitable for
reliable fitting the approach to magnetic saturation data.

The Eq. (4) is an example of possible analytic LAMS expression,
that can be used for fitting the experimental data. However, it implies
certain difficulties. To clarify the problems let's present the data on the
approach to saturation in the following form. The replacement of the
asymptotic power modes M(H)~H−1/2 to M(H)~H−2 with increasing
H, predicted by Eq. (4) can be represented as a replacement of the
exponent in empirical terms M(H)~H-α that describes a small curve
section near some certain field Н. This technique has been used
previously for the analysis of the theoretical LAMS expressions in thin
magnetic films [26]. The details of the corresponding data processing
are illustrated in Fig. 1 for the curve ΔM(H)/Ms≡(Ms−M(H))/Ms

measured in nanocrystalline alloy FeSiBNbCu [18,27]. The exponent α
is determined as the tangent slope in Fig. 1 at a small curve section
near the current fieldН fromН–ΔH/2 toН +ΔH/2. A quite short width
ΔH is selected in order to consider the corresponding curve section as
linear in log-log plot, but it is made long enough for minimizing the
experimental error in the tangent slope. The values α determined by
the technique above are shown in Fig. 2, along with theoretical curves
α(H) calculated as α = Δln d H

Δln H
( ( ))

( ))
m . The theoretical functions d H( )m are

calculated using integrals (3) for C r e( ) = r R− / c,
⎛
⎝⎜

⎞
⎠⎟C r e( ) =

− r
Rc

2

and
C r θ R r( ) = ( − ),c where θ x( ) is Heaviside step function. The replace-
ment of the asymptotic power modes (Fig. 2) from M(H) ~ H −1/2 to
M(H)~H −2 is significantly more abrupt in the experiment than it is
presented by theoretical curves (1)-(3). Although, the change of power
modes by curves (1)–(3) is more abrupt for the case of a more abrupt
decrease of r( ), it demands changing the applied field by at least three
orders of magnitude. The experimental transition from α=0.5 to α=2
holds with changing the applied field by one order. Such a sharp change
in power modes is observed experimentally in various amorphous and
nanocrystalline alloys with LAMS analysis as in Fig. 1 [18,28–35].

Fig. 1. The field of the crossover in the approach to magnetic saturation of the
nanocrystalline alloy FeSiBNbCu. The arrow and the rectangle illustrate the determina-
tion of α(H). The Eq. (9) is the black solid curve and Eq. (5) is dashed.

Fig. 2. Experimental values of exponent α in nanocrystalline alloy FeSiBNbCu (points)

and theoretical curves calculated as α= Δln dm H
Δln H

( ( ))
( ))

. The d H( )m for the curves (1−3) are

calculated using integrals Eq. (3) and C r e( ) = r Rc− / ,

⎛
⎝⎜

⎞
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r
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−
2

and C r θ R r( ) = ( − )c

correspondingly. The curve (4) is calculates using Eq. (9).
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