Accepted Manuscript

Research articles

Thermally induced phase transformation in multi-phase iron oxide nanoparticles on vacuum annealing

A.V. Anupama, W. Keune, B. Sahoo

PII:	S0304-8853(16)31767-X
DOI:	http://dx.doi.org/10.1016/j.jmmm.2017.04.094
Reference:	MAGMA 62699
To appear in:	Journal of Magnetism and Magnetic Materials
Received Date:	12 August 2016
Revised Date:	7 March 2017
Accepted Date:	26 April 2017

Please cite this article as: A.V. Anupama, W. Keune, B. Sahoo, Thermally induced phase transformation in multiphase iron oxide nanoparticles on vacuum annealing, *Journal of Magnetism and Magnetic Materials* (2017), doi: http://dx.doi.org/10.1016/j.jmmm.2017.04.094

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Thermally induced phase transformation in multi-phase iron oxide nanoparticles on vacuum annealing

Anupama A.V.¹, W. Keune² and B. Sahoo^{1,†}

¹Materials Research Centre, Indian Institute of Science, 560012-Bangalore, India ²Fakultät für Physik, Universität Duisburg-Essen, D-47048 Duisburg, Germany.

Abstract: The evolution of magnetic phases in multi-phase iron oxide nanoparticles, synthesized via the transferred arc plasma induced gas phase condensation method, was investigated by X-ray diffraction, vibrating sample magnetometry and ⁵⁷Fe Mössbauer spectroscopy. The particles are proposed to consist of three different iron oxide phases: α -Fe₂O₃, γ -Fe₂O₃ and Fe₃O₄. These nanoparticles were exposed to high temperature (~ 935 K) under vacuum (10^{-3} mbar He pressure). and the thermally induced phase transformations were investigated. The Rietveld refinement of the X-ray diffraction data corroborates the least-squares fitting of the transmission Mössbauer spectra in confirming the presence of Fe₃O₄, γ -Fe₂O₃ and α -Fe₂O₃ phases before the thermal treatment, while only Fe_3O_4 and α - Fe_2O_3 phases exist after thermal treatment. On thermal annealing in vacuum, conversion from γ -Fe₂O₃ to Fe₃O₄ and α -Fe₂O₃ was observed. Interestingly, we have observed a phase transformation occurring in the temperature range ~ 498 K - 538 K, which is strikingly lower than the phase transformation temperature of γ -Fe₂O₃ to α -Fe₂O₃ (573 – 623 K) in air. Combining the results of Rietveld refinement of X-ray diffraction patterns and Mössbauer spectroscopy, we have attributed this phase transformation to the phase conversion of a metastable "defected and strained" d-Fe₃O₄ phase, present in the as-prepared sample, to the α -Fe₂O₃ phase. Stabilization of the phases by controlling the phase transformations during the use of different iron-oxide nanoparticles is the key factor to select them for a particular application. Our investigation provides insight into the effect of temperature and chemical nature of the environment, which are the primary factors governing the phase stability, suitability and longevity of the iron oxide nanomaterials prepared by the gas-phase condensation method for various applications.

Keywords: Multiphase iron oxides (Fe₃O₄, γ -Fe₂O₃ and α -Fe₂O₃); plasma synthesis; Mössbauer spectroscopy; X-ray diffraction; Rietveld refinement; structural and magnetic properties.

† Corresponding author e-mail: <u>bsahoo@mrc.iisc.ernet.in</u> Tel: +91 80 2293 2943

Download English Version:

https://daneshyari.com/en/article/5490828

Download Persian Version:

https://daneshyari.com/article/5490828

Daneshyari.com