Accepted Manuscript

Effect of magnetic field annealing on the magneto-elastic properties of nanocrystalline $\rm NiFe_2O_4$

N. Shara Sowmya, A. Srinivas, P. Saravanan, K. Venu Gopal Reddy, Monaji Vinitha Reddy, Dibakar Das, S.V. Kamat

PII:	\$0304-8853(16)33141-9
DOI:	http://dx.doi.org/10.1016/j.jmmm.2017.04.019
Reference:	MAGMA 62622
To appear in:	Journal of Magnetism and Magnetic Materials
Received Date:	21 November 2016
Revised Date:	8 March 2017
Accepted Date:	7 April 2017

Please cite this article as: N.S. Sowmya, A. Srinivas, P. Saravanan, K.V.G. Reddy, M.V. Reddy, D. Das, S.V. Kamat, Effect of magnetic field annealing on the magneto-elastic properties of nanocrystalline NiFe₂O₄, *Journal of Magnetism and Magnetic Materials* (2017), doi: http://dx.doi.org/10.1016/j.jmmm.2017.04.019

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Effect of magnetic field annealing on the magneto-elastic properties of nanocrystalline NiFe₂O₄

N. Shara Sowmya^{a, b}, A. Srinivas^{a*}, P. Saravanan^a, K. Venu Gopal Reddy^b, Monaji Vinitha Reddy^c, Dibakar Das^c and S.V. Kamat^a

^a Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad, 500 058, India. ^bNational Institute of Technology, Warangal, 506004, India. ^cSchool of Engineering Science and Technology, University of Hyderabad, Hyderabad, 500 046, India.

* Corresponding author: Adiraj Srinivas; Tel: 91-040-2458-6835. Email: adirajs@gmail.com

Abstract

The effect of magnetic-field annealing on the strain sensitivity (q) and saturation magnetostriction (λ_s) of NiFe₂O₄ nanoparticles synthesized by citrate-gel method was investigated. The use of field-annealing resulted in improved magnetoelastic properties at the expense of coercivity. A maximum λ_s of - 40 ppm at 2 kOe, associated with q value of - 3.3 ppm/Oe at 5 Oe was achieved in the field-annealed NiFe₂O₄.

Keywords: Nanoparticles; Magnetic materials; Magneto-elastic; Magnetostriction; Sintering;

Sensors.

Download English Version:

https://daneshyari.com/en/article/5490870

Download Persian Version:

https://daneshyari.com/article/5490870

Daneshyari.com