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Quantum force of tunneling macrospins with a mechanical resonator
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a b s t r a c t

We study force dynamics of macropsin of molecular magnets coupled to a torsional resonator. In the
presence of an ac field and a static field with a gradient, the force is shown to display various types of
quantum oscillations which depend upon the coupling strength and the frequency of torsional oscilla-
tions. Optimal conditions for observing them will be discussed within the framework of experimentally
controllable parameters.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Investigations of the macroscopic quantum tunneling in mag-
netic systems have been a topical issue of intensive theoretical
and experimental studies over the past few decades [1]. Especially,
molecular magnets (MMs) have been at the forefront of research
on quantum tunneling of magnetization at the nanoscale. These
magnets exhibit particularly fascinating quantum effects, such as
the topological interference [2], magnetic deflagration [3], and Rabi
oscillation [4]. Such phenomena provide an ultimate limit of the
miniaturization of magnetic memory and are promising candidates
for qubits [5] and molecular devices [6]. Many efforts have been
made to understand their mechanisms by considering the Landa
u–Zener-Stueckelberg model [7] in MMs. Among them, the tunnel
splitting generated from the transverse anisotropy or field has
been recognized as playing an important role in quantum force
generated by the quantum dynamics of the magnetic moment in
MMs.

The question of the force of a quantum nature in two-state
systems was theoretically studied by Chudnovsky et al. [8]. They
showed that mechanical forces of quantum origin could be
observed in two-state systems with level splitting which depends
on the space, and applied them to MMs in the presence of a micro-
wave field when the magnets were placed in a static magnetic field
with a gradient. A natural extension of the quantum force in two-
level physics is the force in nanomagnets coupled to one or several
quantized modes of a harmonic oscillator. In fact, placing the sam-
ple on a resonator is prevalent in nanomagnetic systems and
molecular devices. The coupling of cantilevers to quantum spins
has been theoretically studied in recent years in the context of

the possibility of reversing the magnetic moment by using
mechanical motion [9,10]. Experimental progress [11] has been
made in characterizing MMs in a nanoelectromechanical system
obtained by grafting MMs on a carbon nanotube or nanocantilever.
Hence it is important to investigate how strongly such couplings
make an effect on the quantum force dynamics before contemplat-
ing real experiments.

In this paper we consider mechanical forces of quantum origin
in MMs that are coupled to a torsional resonator in the presence of
an ac field and a transverse field. In the presence of the gradient of
the level splitting created by the gradient of the transverse field we
demonstrate that there are various force dynamics generated by
four parameters: p ¼ x=xR; � ¼ SðL=LcÞðx=xRÞ; c0 ¼ xr=x, and

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�hS2=Izxr

q
. Here x is a frequency of ac field, xR is the Rabi

frequency associated with the amplitude of ac field, L is a thickness
of sample, Lc is the characteristic length describing the field gradi-
ent, �hS is the spin, Iz is the moment of inertia of the resonator, and
xr is the fundamental frequency of torsional oscillations. With an
eye on resonant experiments the magnitude of p and � determine
the possibility of the existence of a quantum force through the
oscillation of the populations of the two-levels in time. The other
two parameters, c0 and k play crucial roles in the oscillatory struc-
ture of the force such as the shape of the force with nodes, i.e.,
quantum beat. Especially, the period of the beat strongly depends
upon the coupling strength between the spin and oscillator. Based
on the analytic expression of a quantum force obtained with the
use of the rotating wave approximation, we provide the optimal
condition for the appearance of quantum beat by controlling the
parameters. In this respect, the quantum dynamics of the force in
a spin-oscillator system is expected to be more diverse and
experimentally measurable in molecular devices.
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This paper is organized as follows. The two-state model in MMs
coupled to a mechanical resonator is reviewed in Section 2. The
quantum force of spin-oscillator system is introduced in Section 3.
Employing the rotating wave approximation, we present the
approximate analytic form of the force in a weak coupling regime
and analyze the period of its oscillating part which relies on four
parameters. Section 4 contains conclusions and suggestions for
experiment.

2. The two-state model in a spin-oscillator system

Consider a crystal of MM with the Hamiltonian

HMM ¼ �DS2z þH?; ð1Þ
where Siði ¼ x; y; zÞ are three components of the spin operator,
Dð> 0Þ is the second order longitudinal anisotropy constant. The
second term is a small transverse term that does not commute with
Sz and, thus, allows tunneling of S between states. Absence of H?
implies that j � Si eigenstates of Sz are degenerate ground states
of �DS2z . The transverse operator H? in the Hamiltonian (1) per-
turbs the j � Si and provides the quantum tunneling which results
in the avoided level crossing between two states j � Si and jSi. Then,
the ground state and the first excited state are even and odd com-
binations of j � Si, respectively, [12]

j�i ¼ 1ffiffiffi
2

p jSi � j � Sið Þ: ð2Þ

with E� � Eþ ¼ D being the level splitting. Since the tunnel splitting
D is generally many orders of magnitude less than the energy to the
next spin level(� 2SD), [13] it makes the two-state approximation
very accurate at low energies. In this respect we can describe such
a two-state system by a pseudospin 1/2 whose components are

r̂0
x ¼j � SihþSj þ j þ Sih�Sj;

r̂0
y ¼ij � SihþSj � ij þ Sih�Sj;

r̂0
z ¼j þ SihþSj � j � Sih�Sj: ð3Þ
Projecting HMM onto j � Si states and applying an ac field along

the Z axis, one obtains the Hamiltonian

Hr ¼ �D
2
r̂0

x � glBSBac sinðxtÞr̂0
z; ð4Þ

where Bac is an amplitude of ac field and x is its frequency, with g
being the gyromagnetic factor and lB being the Bohr magneton.
Here the second term can be small compared to the first term as
long as the magnitude of ac field satisfies Bac � D=ðglBSÞ. As this
condition is fulfilled, the approximate eignestates of the problem
are given by Eq. (2). Their energies are �D=2 which correspond to
the states j�i. At x ’ D=�h, the second term produces transitions
between these states, resulting in the Rabi oscillation [14].

Let now MMs be coupled to a mechanical resonator with tor-
sional rigidity k. In the presence of a mechanical rotation of the
oscillator that can rotate around the Z axis, [15] we perform the
rotation of the Hamiltonian (4) by angle / about the Z axis which
leads to [9]

Hr;osc ¼
�h2L2z
2Iz

þ 1
2
Izx2

r/
2 � glBSBac sinðxtÞr̂0

z

� D
2

r̂0
x cos 2S/ð Þ þ r̂0

y sin 2S/ð Þ
h i

; ð5Þ

where Iz is the moment of inertia of the resonator about its rotation
axis and xrð¼

ffiffiffiffiffiffiffiffiffi
k=Iz

p
Þ is the fundamental frequency of torsional

oscillations. The operator of the mechanical angular momentum,
Lz ¼ �i@=@/ and the angular displacement / of the oscillator obey

the commutation relation ½/; Lz� ¼ i. The first two terms in Eq. (5)
describe mechanical rotation and the last term indicates the cou-
pling of spin transition to the mechanical rotations. The limit
xr ¼ 0 corresponds to the case where the system consists of a free
nanomechanical body and a tunneling spin [16].

Since we are interested in the case where the states in Eq. (2)
are coupled to nanoresonator which rotates in an oscillator fashion
under a restoring torque, it is convenient to introduce the annihi-
lation and creation operator, a and ay,

Lz ¼ i

ffiffiffiffiffiffiffiffiffi
Izxr

2�h

r
ðay � aÞ;/ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
�h

2Izxr

s
ðay þ aÞ; ð6Þ

for the oscillator, and use the basis that is a direct product of the
two basis states, j�i, and the harmonic oscillator basis, jmi. Then,
the projection of the Hamiltonian in Eq. (5) onto jmij�i states gives

H ¼ �hxr ayaþ 1
2

� �
� �hxR sinðxtÞr̂x

� D
2
r̂z cos 2S/ð Þ � r̂y sin 2S/ð Þ� �

; ð7Þ

where xR ¼ glBSBac=�h is the Rabi frequency and r̂i (i ¼ x; y; z) has
the same form as Eq. (3) by replacing j � Si by j�i. In this case the
wave function can be expressed as

jWðtÞi ¼
X1
m¼0

X
a¼þ;�

CmaðtÞjmijai; ð8Þ

where the coefficients Cma satisfy the time-dependent Schrödinger
equation.

3. Force dynamics of tunneling macrospins with torsional
oscillations of a mechanical resonator

Let us now consider a spin-oscillator system containing a
macroscopic number of noninteracting two-state particles. The
force on the systems is given by

F ¼ �
X0

Tr qrHð Þ; ð9Þ

where
P0 indicates the summation over the systems and

q ¼ jWihWj is the thermal-state one-particle density matrix.
In general, the level splitting is generated by the transverse ani-

sotropy or field. For the gradient D, choosing a gradient of the
transverse magnetic field that can be used as a controllable param-
eter in experiment is feasible. Because we are interested in the res-
onant state, the spatial change in D across a system of thickness L
along the Y axis is small compared to D itself; that is,
jdD=dyj � D0=L, where D0 is the tunnel splitting in the center of
the system (y ¼ 0). Such a condition indicates SjdB=dyj � B0=L by
using the relation that [1] D / B2S, where BðyÞ is the transverse
external field along the medium or hard axis and Bð0Þ ¼ B0. Writing
BðyÞ ¼ B0ð1þ y=LcÞ, where Lc is the characteristic length describing
the field gradient, we find the expression for D as a function of y
expressed as

D ¼ D0 1þ 2Sy
Lc

� �
ð10Þ

with SðL=LcÞ � 1.
With the help of Eq. (8), denoting the density matrix q as

q ¼
X1

m;m0¼0

X
a;a0¼þ;�

jmijaiqmm0aa0 hm0jha0j: ð11Þ

one has a quantum force originated from the gradient of the tunnel
splitting in a spin-oscillator system given by
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