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a b s t r a c t

A generic analytical model has been developed to fully describe the flux closure through magnetic induc-
tors. The model was applied to multiple device topologies including solenoidal single return path and
dual return path inductors as well as spiral magnetic inductors for a variety of permeabilities and dimen-
sions. The calculated inductance values from the analytical model were compared with simulated results
for each of the analyzed device topologies and found to agree within 0.1 nH for the range of typical thin-
film magnetic permeabilities (�102 to 103). Furthermore, the model can be used to evaluate behavior in
other integrated or discrete magnetic devices with either non-isotropic or isotropic permeability and
used to produce more efficient device designs in the future.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Thin film magnetic materials are being increasingly integrated
into electronics to boost transduction in inductors [1–5], trans-
formers [6,7], micro-electromechanical systems [8–10], and sen-
sors [11,12]. Apart from cost effectiveness, the main obstacle
standing in the way of proliferation of magnetic integration is
the difficulty of understanding and predictably modeling thin-
film magnetic behavior. As magnetic devices decrease in size and
go from discrete components to integrated forms, the behavior
changes dramatically and typical textbook expressions fail to cap-
ture it. Various analytical models have been put forth to help pre-
dict the behavior of specific device topologies [4,13,14]. However a
more comprehensive model is required to describe a broader range
of topologies and explain the change in magnetic flux behavior as
devices transition from discrete to integrated forms.

When magnetic materials are converted from bulk to thin film
forms for integrated devices, the reluctance of the magnetic core
changes, resulting in a different spatial distribution of the flux clo-
sure. The main reasons for this change are that compared to bulk
magnets, thin-film magnetic materials (1) have lower permeabili-
ties, (2) suffer from larger demagnetization effects, and (3) are
often patterned into rectilinear structures with sharp edges that

have increased local demagnetization fields. Taking into account
all these factors, this paper presents a rather concise and accurate
model for magnetic closed-loop devices by considering all the pos-
sible paths in which the flux can close. The model is compared
against simulations of both integrated and discrete inductors in
order to demonstrate its versatility. Additionally, since the model
takes into account the different flux paths contributing to the total
inductance, a comparison is made in order to identify, as a function
of both permeability and design dimensions, which flux path has
the greatest contribution to the inductance. Equipped with this
information, integrated thin-film magnetic devices can be opti-
mized to maximize both flux flow through the magnetic film and
enhancement due to it.

2. Analytical model

The analytical model is based on an analysis of the total reluc-
tance of the design, considering all the possible ways in which the
flux can close. The analysis is similar in methodology to several
previous works [13–15]. While some assumptions had to be made
about the device structure and demagnetization factors to simplify
analysis, the model was kept as general as possible in order to
apply broadly to a wide range of magnetic devices. Assumptions
related to structure and demagnetization are explicitly stated as
they arise in the derivation below. Closure in the model is assumed
to be directly related to isotropic permeability in the magnetic
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core, which is difficult to achieve experimentally, but has been
demonstrated to a certain degree in [16,17]. Later, the model is
generalized for cases of non-isotropic permeability as well. Two
solenoid inductor structures with isotropic permeability are
described initially, while more topologies and non-isotropic per-
meability cases will be considered in the discussion section of this
paper. The two isotropic inductor structures, illustrated in Fig. 1,
are the single return path (SRP) and dual return path (DRP) topolo-
gies, which are defined by whether they have one or two sections
of magnetic material in which the flux can return. The DRP topol-
ogy has the advantage that flux generated anywhere in the solenoi-
dal region can close through the nearest magnetic return path, and
thereby have a shorter overall flux path and lower reluctance than
the SRP topology.

Ampere’s law explains that the total magnetomotive force,
Vmmf , is given by the integral of the magnetic field around a closed
loop. This same magnetomotive force can then be understood to be
a sum of the drops across each of the different sections of the path.I

H � dl ¼ Vmmf ð1Þ

Xn
i¼1

Vmmfi ¼ Vmmf ð2Þ

The reluctance of each section of the flux path can therefore be
evaluated separately and related back to the equivalent magnetic
circuit model to compute the total reluctance and, finally, the total
inductance.

For instance, for the SRP design, the circuit model represented
in Fig. 2 begins with a flux-forming region where the coil perfectly
surrounds the magnetic core. (Although the magnetic potential is
not instantaneously created, the model locates it specifically at
the beginning of the coil and evaluates the potential drop across
this region to be Vmmf1 .) The flux then branches off. In one case,
the flux can flow entirely through the magnetic curvature and, in
another case, the flux can take a shortcut directly across the gap
to reach the magnetic core on the other side. After this section,
the flux recombines and returns through the magnetic core
straight leg section, then once again splits up to follow either the
magnetic curvature or cut across the gap one final time. In parallel
with all of this is a reluctance path that describes the flux returning
entirely through air.

For each of these sections, an expression for the magnetic field,
and subsequently, the flux density and flux are evaluated as a func-
tion of permeability and dimensions. The reluctance is the ratio of
the magnetomotive force to the flux flowing through the section,
R ¼ Vmmf =U. The total reluctance of the structure is then evaluated
according to the series and parallel circuit models of Fig. 2. Finally,
the inductance is equal to the ratio of the square of the number of
turns to the total reluctance:

L ¼ N2

R ð3Þ

The reluctance of the flux-forming region is given as

Rnominal ¼ lm
l0lrwmtm

ð4Þ

where lm;wm, and tm are the length, width, and thickness of the
magnetic core, respectively, and l0 and lr are the free-space and
relative permeabilities.

In order to define the flux through the curved core region, the
model must account for the variation in the flux density as a func-
tion of position. Assuming uniform isotropic permeability, the flux
will attempt to travel along the shortest possible path around the
curvature, hugging the inner edge of the core, in order to see the
smallest reluctance possible, as seen in Fig. 3. Therefore, best
designs minimize the radius of curvature. In addition, since the flux
is more concentrated in the inner region of the core, it follows that
an effective closure width, weff can be defined beyond which
increasing the width dimension of the closure region of the device
will result in minimal increase in inductance since very little flux
flows near the outer radius of the core. Evaluating this effective
width would help in designing area-efficient closed-loop inductors.

To calculate the flux through the curved region, an integral
must be evaluated as a function of radius s drawn from the inner
edge of the core. The flux density at a given radius, in expressed as:

Hcurve ¼ Vmmf2

lg þ ps
ð5Þ

Bcurve ¼ l0lrHcurve ¼ l0lrVmmf2

lg þ ps
ð6Þ

This expression is then integrated from the inner radius (s ¼ 0)
to the outer radius based on the width of the core in the closure
region (s ¼ wm).

Ucurve ¼
Z wm

0
Bcurvetmds ¼ l0lrVmmf2 tm

p
ln

lg þ pwm

lg

����
���� ð7Þ

Rcurve ¼ Vmmf2

Ucurve
¼ p
l0lrVmmf2 tm

ln
lg þ pwm

lg

����
����

� ��1

ð8Þ

An expression for the amount of flux that cuts across the gap
can be determined once approximate dimensions for the area of
the flux region are defined. As the flux crosses the gap, the length
of the path is assumed to be the gap length, lg , while the width can
be approximated as half the length of the magnetic core in the flux-
forming region, i.e. lm=2, allowing for the flux to cut back across the
gap in the other half. (Although this implies the flux travels only an
infinitesimal length between these two sections, to first order, this
approximation appears to give good results.) The thickness of the
flux cross-section area is assumed to be the thickness of the core,
tm. Note that the magnetic field in this case is that in air and the
permeability is that of free space, l0. In order to relate these two
values to the magnetic field and flux inside the magnet, demagne-
tization effects must be taken into account to give an effective

Fig. 1. The two closed-loop magnetic solenoid inductor topologies used for optimizing the analytical model, including either (a) only one section or (b) two sections through
which the flux can return in the magnetic core.
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