Author's Accepted Manuscript

The influence of surface modification, coating agents and pH value of aqueous solutions on physical properties of magnetite nanoparticles investigated by ESR method

Krzyminiewski, Bernadeta Dobosz, Ryszard Joanna Kurczewska, Grzegorz Schroeder

PII: S0304-8853(16)33057-8

http://dx.doi.org/10.1016/j.jmmm.2017.01.026 DOI:

MAGMA62374 Reference:

To appear in: Journal of Magnetism and Magnetic Materials

Received date: 16 November 2016 Revised date: 5 January 2017 Accepted date: 8 January 2017

Cite this article as: Bernadeta Dobosz, Ryszard Krzyminiewski, Joann Kurczewska and Grzegorz Schroeder, The influence of surface modification coating agents and pH value of aqueous solutions on physical properties o magnetite nanoparticles investigated by ESR method, Journal of Magnetism and Magnetic Materials, http://dx.doi.org/10.1016/j.jmmm.2017.01.026

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

The influence of surface modification, coating agents and pH value of aqueous solutions on physical properties of magnetite nanoparticles investigated by ESR method

Bernadeta Dobosz^{1*}, Ryszard Krzyminiewski¹, Joanna Kurczewska², Grzegorz Schroeder²

¹Medical Physics Division, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland

²Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89B, 61-614 Poznań, Poland

*Corresponding author. Bernadeta Dobosz, PhD Medical Physics Division Faculty of Physics Adam Mickiewicz University Umultowska 85 61-614 Poznań, Poland Tel.: +48 61 829 5180; fax: +48 61 829 5189; benia@amu.edu.pl

Abstract

The article presents the results of electron spin resonance (ESR) studies for aqueous solutions of functionalized superparamagnetic iron(II,III) oxide nanoparticles. The samples studied differed in type of organic ligands at the magnetite surface, type of coating agent and pH value of aqueous solutions. The ESR spectra of the samples were obtained at room temperature and at 230 K. The field cooling (FC) experiment was performed for selected samples, and the effective anisotropy field (H_{K2}) and the first order magnetocrystalline anisotropy constant (K_1) was calculated. The process of the nanoparticles diffusion in different environments (human blood, human serum) forced by an inhomogeneous magnetic field was monitored and their interactions with different solvents have been discussed. It has been shown that ESR method is useful to observe the impact of organic ligands at the magnetite surface, type of coating agent and pH value of aqueous solutions on the properties of iron(II,III) oxide nanoparticles.

Keywords: electron spin resonance, magnetite, 4-Amino-TEMPO, coating agents, diffusion

Download English Version:

https://daneshyari.com/en/article/5491112

Download Persian Version:

 $\underline{https://daneshyari.com/article/5491112}$

Daneshyari.com