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A B S T R A C T

A consistent theory of ferromagnetic resonance in a dilute suspension of superparamagnetic particles with
uniaxial anisotropy of arbitrary strength is presented. The developed approach is used for studying the high-
frequency response of a magnetic fluid at different temperatures. It is shown that in a certain temperature
interval the absorption line splits into two components. The width of this interval is essentially dependent on the
magnitude of the particle anisotropy.

1. Introduction

In the last decade magnetic nanoparticles have found broad
application in a variety of systems, from solar cells to living organisms
[1]. Evidently, efficient use of nanomagnets is impossible without
detailed knowledge of their properties. One of the most powerful tools
to do that, is ferromagnetic resonance (FMR). With the burst out of
nanotechnologies, the theory of FMR has got a boost, because the
standard approach (the athermic Landau-Lifshitz-Gilbert equation)
has proved to be inappropriate. The crucial issue is the superpara-
magnetism of those nanoparticles: the entrainment of their magnetic
moment in thermofluctuation process due to which the response of
such particles depends essentially on temperature. In the recent paper
[2], we have presented a theory of FMR in uniaxial nanoparticles,
embedded in a solid matrix (a polymer, for example). The FMR of the
particles, dispersed in a liquid medium, is no less interesting though.
The demand for a robust theory is especially high because of the
progress in experimental work, see e.g. [3–8]. Meanwhile, up to now
there exist only two approximate methods: the quantum theory by
Noginova et al. [3] and the kinetic approach proposed by Raikher and
Stepanov [9]. In methodical scheme [3], a nanoparticle is considered as
a giant exchange cluster with a discrete set of states. The absorption
spectrum is calculated by combining all the transitions between the
allowed levels. It is clear that such a description is applicable only for
the particles whose diameters do not exceed just few nanometers. The
Raikher-Stepanov method is based on the Brown kinetic equation for
the orientational distribution function of the magnetic moment [10].
The advantage of that approach is that it consistently takes into account
the thermal fluctuations of the magnetic moment and the rotatory

mobility of the particles. However, the use of the scheme [9] is justified
only for the particles whose effective anisotropy field is much lower
than the magnetizing field of a spectrometer. In the present paper, the
kinetic approach is generalized for magnetic fluids (ferrocolloids)
where the particles possess uniaxial magnetic anisotropy of arbitrary
strength.

2. Ferromagnetic resonance

Consider a magnetic fluid based on single-domain particles with
easy-axis (uniaxial) anisotropy under assumption that the volume
fraction of magnetic material is low (dilute suspension), so that
interactions between the dispersed particles might be neglected. In
that case, the magnetic energy of each particle

e H e nU M v Kv= − · − ( · ) ,s
2 (1)

includes only the energy of magnetic moment in external field H (first
term) and the anisotropy energy (second term). In expression (1) the
quantity Ms is the particle magnetization, v its volume, K anisotropy
constant, while e and n are unit vectors of magnetic moment μ eM v= s
and easy magnetization axis, respectively.

To observe ferromagnetic resonance, one has to subject the
suspension to a time-independent H0 and radio-frequency h t( ) fields,
whose directions are mutually orthogonal. If the suspension is frozen,
the dispersed particles are immovable, and for each of them the angle ψ
between the direction of the magnetizing field and the easy magnetiza-
tion axis is fixed. In that situation, the response of the system to a
probing field h t( ) could be found by calculating the partial dynamic
susceptibility for each ψ and averaging the result with a certain
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distribution function f ψ( ) that is independent of the applied field. For
instance, in the isotropic case this function is constant f ψ π( ) = 1/4 .
The corresponding problem was solved in Ref. [2].

A particle suspended in a liquid, as it is free to rotate, tends to
reorient in such a way that its magnetic moment e, anisotropy axis n
and magnetizing field H0 would be co-aligned. Full collinearity of those
vectors is not attainable however, because of thermal fluctuations, i.e.,
the rotatory Brownian motion. For such a situation, if to take into
account the intraparticle magnetic interactions, it becomes clear that
the degree of orientational order of easy magnetizaton axes of the
particles—it is described by function f ψ( )—should depend on the ratio
of the magnetic anisotropy energy to thermal one. In view of that, the
theory of FMR in a magnetic fluid should combine solutions of two
problems. First, it should describe the resonance response of the
superparamagnetic particle with the given angle ψ between the
anisotropy axis and the magnetizing field. Second, it should specify
the orientational distribution function f ψ( ) at any external field. Then
the averaging of the partial FMR spectra by means of that function
must be done.

With respect to the first problem, it suffices to treat it in linear
approximation. Indeed, the exciting field h t( ) in FMR experiments has
a circular frequency ω ∼ 60·10 rad/s9 . Normally, it is not feasible to
generate a field of large amplitude at ultrahigh frequencies, and that is
why for most experiments h t H( )⪡ 0. That condition allows one to
present the magnetic moment of a particle as a sum of equilibrium
value e0 and a small perturbation e eδ| |⪡| |0 .

The theory of linear FMR in a superparamagnetic particle is given
in [2]. As the magnetic moment of a single-domain particle undergoes
thermal fluctuations, its state is described by the orientational dis-
tribution function e nW t( , , ) which obeys the Brown equation [10]:
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here ∇ = e
∂
∂ is the gradient operator on the surface of a unit sphere,

J e= × ∇ the operator of infinitesimal rotation, U magnetic energy
(1), α precession damping constant, γ gyromagnetic ratio, and
τ α μ αγk T= (1 + ) /(2 )D B

2 the reference time of rotary diffusion of the
magnetic moment. Evidently, the equilibrium solution of that equation
is a Boltzmann-type function.

In a typical FMR setup, the derivative with respect to the
magnetizing field of the energy absorbed during a cycle of the probing
field is measured. The theoretical analog for that quantity is found by
solving the Brown Eq. (2). We introduce a spherical coordinate system
with the polar axis along the magnetizing field and expand the
distribution function in a series of normalized spherical harmonics:
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where Pl k, are associated Legendre polynomials and φ(ϑ, ) are the angle
coordinates of vector e. As the spherical functions are orthonormalized,
the coefficients b t( )l k, in (3) turn out to be statistical moments of the
distribution function:

∫b W φ Y d dφ Y= (ϑ, ) * sin ϑ ϑ = 〈 * 〉;l k l k l k, , , (5)

as W is a real function, they satisfy the relation b b= (−1) *l k
k

l k,− , .
Substitution of series (3) into (2) leads to a set of recurrence relations
for the variables b t( )l k, . Before solving this set, let us introduce
nondimensional quantities. The strengths of the magnetizing and
probing fields are rendered by parameters Q Hγ ω= /0 and

q ht γ t ω( ) = ( )/ , while the anisotropy and temperature are characterized
by ε γK ωM= / s and ξ μω γk T= /L B , respectively. Under condition q Q⪡ ,
any moment b t( )l k, is presented as a sum of the equilibrium value and
small non-equilibrium perturbation: b b δb t= + ( )l k l k l k, ,

0
, . Assuming

δb b⪡l k l k, ,
0 , we linearize the derived set of equations and make its

Fourier transform. That yields a set of linear algebraic equations for
Fourier coefficients δbl k

ω
, , whose combinations determine the dynamic

magnetic moment of the particle as
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Let the harmonic exciting field be right-hand circularly polarized
and perpendicular to the magnetizing one. In that case, full informa-
tion about the resonance properties of the system is delivered by the
dynamic susceptibility χ δe q= /ω ω

+ + + that defines the relation between
circular components of the magnetic moment δe δe iδe= +ω

x
ω

y
ω

+ and the
probing field q q iq= +ω

x
ω

y
ω

+ . The derivative of imaginary part of the
susceptibility, dχ dQ

″
/+ , taken as a function of the field Q, is the

theoretical analog of the FMR spectrum, recorded in an experiment.
In a magnetic fluid the distribution of anisotropy axes of the

particles is a tunable characteristic. Since the probing field is weak,
to a first approximation that distribution is determined only by the
magnetizing field Q and, thus, can be regarded as stationary. This
means that the probability density f ψ( ) of finding a particle whose
anisotropy axis is inclined under angle ψ to the magnetizing field, could
be found by integrating the equilibrium distribution function e nW t( , , )
over all possible directions of the magnetic moment e. Such a
calculation was accomplished in Ref. [9], where it was demonstrated
that f ψ( ) could be taken in the form

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∑f ψ

π
I ξ k I ξ R σ P ψ( ) = 1

4
1 + ( ) (4 + 1) ( ) ( ) (cos ) ;

k
k k k1

2

−1

=1

∞

2 + 1
2

2 2
(7)

where parameters ξ = H
k T
μ
B

and σ = Kv
k TB

are, respectively, the Zeeman

and anisotropy energies measured in temperature units. The functions
P x( )k2 in (4) are Legendre polynomials of order k2 , while I ξ( )k2 + 1

2
are

modified Bessel functions of semi-integer index; R σ( )k2 defined as
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In Fig. 1, the orientational distribution function f ψ( ) of easy
magnetization axes is shown for different values of temperature (a)
and anisotropy (b). As seen from Fig. 1a, cooling of the system leads to
orientational ordering (texturing) of the suspension, i.e., to growth of
the number of particles, whose axes are aligned with the external field.
At any fixed temperature, the same effect takes place if to increase the
particles anisotropy, see Fig. 1b.

3. Results

The above-outlined method was used to model the FMR spectra of a
dilute magnetic fluid. In Fig. 2 the absorption lines corresponding to
different values of anisotropy parameter ε = 0.1 (a), 0.3 (b), 0.6 (c) and
for different ξL's are shown. At high temperature (ξ = 1L , dash-dot
lines) the resonance lines are very much the same as those of an
ensemble of randomly oriented particles, cf. Fig. 5 from Ref. [2]. That
result is completely expectable, since at high temperature, as Fig. 1
shows, the distribution of anisotropy axes in a magnetic fluid is by large
isotropic.

At small anisotropy (ε = 0.1, Fig. 2a), the temperature decrease, i.e.,
growth of parameter ξL, at first, results in a slight shift of the spectrum
towards greater fields. However, starting with certain temperature, the
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