Author's Accepted Manuscript

Magneto-optical Kerr effect in ZnTMO₂ (TM=Cr, Mn, Fe, Co and Ni)

R. Merikhi, B. Bennecer, A. Hamidani

PII: S0304-8853(16)30518-2

DOI: http://dx.doi.org/10.1016/j.jmmm.2016.10.089

Reference: MAGMA62002

Journal of Magnetism and Magnetic Materials To appear in:

Received date: 3 May 2016

Revised date: 27 September 2016 Accepted date: 16 October 2016

Cite this article as: R. Merikhi, B. Bennecer and A. Hamidani, Magneto-optica Kerr effect in ZnTMO₂ (TM=Cr, Mn, Fe, Co and Ni), Journal of Magnetism and Magnetic Materials, http://dx.doi.org/10.1016/j.jmmm.2016.10.089

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

Magneto-optical Kerr effect in ZnTMO₂

(TM= Cr, Mn, Fe, Co and Ni)

R. Merikhi, B. Bennecer* and A. Hamidani

Physics Laboratory at Guelma, Faculty of Mathematics, Computing and Material Sciences, University 8 Mai 1945 Guelma, P.O. Box 401 Guelma 24000, Algeria

Abstract

First principles generalized gradient full potential density-functional calculations were performed to predict the optical and magneto-optical (MO) properties of the chalcopyrite compounds $ZnTMO_2$, TM=Cr, Mn, Fe, Co and Ni. Detailed investigation of the electronic band structure and density of states is reported. The optical properties in the 0-8 eV energy range are analyzed in terms of band structure transitions. As for the magneto-optical properties, our results show that the studied compounds have peaks in the Kerr rotation ranging from infrared to ultraviolet radiation, with $ZnFeO_2$ having the highest Kerr rotation angle of 10° and -8.46° at 0.35 eV and 4.59 eV, respectively. The peaks in the Kerr spectra were assigned to the optical and magneto-optic contributions. Our calculated function of merit for these compounds indicates that these compounds might be useful for technological application in high density storage.

Key words: : Chalcopyrite; Ab initio calculations; Optical conductivity;

Magneto-optical properties; FP-LAPW

Preprint submitted to Journal of Magnetism and Magnetic Materials 18 October 2016

Download English Version:

https://daneshyari.com/en/article/5491256

Download Persian Version:

https://daneshyari.com/article/5491256

<u>Daneshyari.com</u>