
Author's Accepted Manuscript

Effect of starting solution acidity on the characteristics of CoFe₂O₄ powders prepared by solution combustion synthesis

B. Pourgolmohammad, S.M. Masoudpanah, M.R. Aboutalebi

PII: S0304-8853(16)32168-0

DOI: http://dx.doi.org/10.1016/j.jmmm.2016.10.073

Reference: MAGMA61986

To appear in: Journal of Magnetism and Magnetic Materials

Received date: 11 September 2016 Revised date: 8 October 2016 Accepted date: 15 October 2016

Cite this article as: B. Pourgolmohammad, S.M. Masoudpanah and M.R Aboutalebi, Effect of starting solution acidity on the characteristics of CoFe₂O powders prepared by solution combustion synthesis, *Journal of Magnetism and Magnetic Materials*, http://dx.doi.org/10.1016/j.jmmm.2016.10.073

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

Effect of starting solution acidity on the characteristics of CoFe₂O₄ powders prepared by solution combustion synthesis

B. Pourgolmohammad, S. M. Masoudpanah*, M. R. Aboutalebi

School of Metallurgy & Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran

Corresponding author. Tel.: +98 21 77240540, Fax:+98 21 77240480. masoodpanah@iust.ac.ir

Abstract

Cobalt ferrite (CoFe₂O₄) nanoparticles were synthesized at the different pH values of starting solution, adjusted by NH₄OH, using solution combustion method. Theoretical calculations and Fourier transform infrared spectroscopy analysis were carried out for determination and controlling the chelated species in solution. The phase evolution, surface area, morphology and magnetic properties of the combusted CoFe₂O₄ powders have been investigated by thermal analysis, X-ray diffractometry, electron microscopy, adsorption–desorption and vibrating sample magnetometer. The combustion rate mainly depends on pH which affects the phase and crystallite size. Furthermore, the specific surface area of the porous CoFe₂O₄ powders decreases from 66.25 to 27.09 m²/g by the increase of pH from 2 to 10. The combusted CoFe₂O₄ powders exhibit ferromagnetic properties which the highest saturation magnetization of ~63.7 emu/g was achieved at pH of 2. Furthermore, the coercivity increases from 1112 to 1225 Oe by the increase of pH due to the decreasing of crystallite size.

Keywords

Cobalt ferrite; Solution combustion synthesis; Acidity; Magnetic property;

1. Introduction

Combustion synthesis which also known as self-propagating high-temperature synthesis (SHS) is an effective energy saving and low-cost method for production of various advanced materials [1-3]. The initial heterogeneous mixture in combustion synthesis is ignited by an external thermal source which leads to propagation of a rapid high-temperature (1000–3000 °C) reaction wave in

1

Download English Version:

https://daneshyari.com/en/article/5491259

Download Persian Version:

https://daneshyari.com/article/5491259

<u>Daneshyari.com</u>