
Author's Accepted Manuscript

4-*d* magnetism: electronic structure and magnetism of some Mo-based alloys

Yong Liu, S.K. Bose, J. Kudrnovský

S0304-8853(16)31736-X

DOI: http://dx.doi.org/10.1016/j.jmmm.2016.09.045

Reference: MAGMA61826

PII:

To appear in: Journal of Magnetism and Magnetic Materials

Received date: 8 August 2016 Accepted date: 10 September 2016

Cite this article as: Yong Liu, S.K. Bose and J. Kudrnovský, 4-d magnetism electronic structure and magnetism of some Mo-based alloys, *Journal of Magnetism and Magnetic Magnetic Materials* http://dx.doi.org/10.1016/j.jmmm.2016.09.045

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

4-d magnetism: electronic structure and magnetism of some Mo-based alloys

Yong Liu,^a, S.K. Bose^{b,*}, and J. Kudrnovský^c

^aSchool of Sciences, Yanshan University, Qinhuangdao, 066004, China ^bPhysics Department, Brock University, St. Catharines, ON, L2S 3A1, Canada ^cInstitute of Physics, Academy of the Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague 8, Czech Republic

Abstract

We report results of a first-principles density-functional study of alloys of the 4d-element Mo with group IV elements Si, Ge and Sn in zinc blende (ZB) and rock salt (RS) structures. The study was motivated by a similar study of ours based on the 4d-element Tc, which showed the presence of half-metallic states with integer magnetic moment $(1\mu_B)$ per formula unit in TcX (X=C, Si, Ge) alloys. The calculated Curie temperatures for the ferromagnetic (FM) phases were low, around or less than 300 K. Searching for the possibility of 4d-based alloys with higher Curie temperatures we have carried out the study involving the elements Mo, Ru and Rh. Among these the most promising case appears to be that involving the element Mo. Among the MoX (X=Si, Ge, Sn) alloys in ZB and RS structures, both MoGe and MoSn in ZB structures are found to possess an integer magnetic moment of $2\mu_B$ per formula unit. ZB MoSn can be classified as a marginal/weak half-metal or a spin gapless semiconductor, while ZB MoGe would be best described as a gapless magnetic semiconductor. The calculated Curie temperatures are in the range 300-700 K. Considering the theoretical uncertainty in the band gaps due not only to the treatment of exchange and correlation effects, but density functional theory itself, these classifications may change somewhat, but both merit investigation from the viewpoint of potential spintronic application. Based on their higher Curie temperatures, Mo-based alloys would serve such purpose better than the previously reported Tc-based ones.

Email address: sbose@brocku.ca (S.K. Bose)

^{*}Corresponding author: S.K. Bose

Download English Version:

https://daneshyari.com/en/article/5491281

Download Persian Version:

https://daneshyari.com/article/5491281

<u>Daneshyari.com</u>