Author's Accepted Manuscript

Study on the adsorption of Cu(II) by folic acid functionalized magnetic graphene oxide

Cuicui Wang, Heyi Ge, Yueying Zhao, Shanshan Liu, Yu Zou, Wenbo Zhang

PII: S0304-8853(16)31189-1

DOI: http://dx.doi.org/10.1016/j.jmmm.2016.09.128

Reference: **MAGMA61909**

Journal of Magnetism and Magnetic Materials To appear in:

Received date: 23 June 2016

Revised date: 29 September 2016 Accepted date: 30 September 2016

Cite this article as: Cuicui Wang, Heyi Ge, Yueying Zhao, Shanshan Liu, Yu Zou and Wenbo Zhang, Study on the adsorption of Cu(II) by folic acid functionalized magnetic graphene oxide, Journal of Magnetism and Magneti Materials, http://dx.doi.org/10.1016/j.jmmm.2016.09.128

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

Study on the adsorption of Cu(II) by folic acid functionalized magnetic graphene oxide

Cuicui Wang^{1,2}, Heyi Ge^{1,2*}, Yueying Zhao³, Shanshan Liu^{1,2}, Yu Zou^{1,2}, Wenbo Zhang^{1,2}

¹Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, P.R. China

²School of Material Science and Engineering, University of Jinan, Jinan 250022, P. R. China

Abstract

The folic acid functionalized magnetic graphene oxide (FA-mGO) as a new adsorbent has been synthesized in this work for the elimination of Cu(II) from waste water. The as-prepared FA-mGO was tested by SEM, TEM, particle size analyzer, FTIR, XRD, Roman spectrum, TGA and magnetic properties analyzer. Some factors, such as adsorbent dose, pH, contact time, initial concentration of adsorbate and temperature were explored. The results showed that the FA-mGO had the better adsorption performance than mGO. After 40 min, the adsorption equilibrium could be reached. Furthermore, the adsorption property obeyed the pseudo-second order kinetic model and the Temkin isotherms well. The maximum adsorption capacity was 283.29 mg g⁻¹ for Cu(II) from Pseudo-second-order model at pH = 5 and 318 K. The chelation action between FA and Cu(II) along with electrostatic incorporation between GO and Cu(II) determined the favourable adsorption property. Besides, thermodynamic studies results $\Delta G^0 < 0$, $\Delta H^0 > 0$, $\Delta S^0 > 0$ suggested that the adsorption mechanism was an endothermic and spontaneous process essentially. Finally, desorption and reusability studies imply FA-mGO has an excellent reproducibility and is benefit to environmental protection and resource conservation.

³Shandong Xiaguang Industrial Co., LTD, Jining 272000, P. R. China

^{*}Corresponding author: Tel.: +86 531 82769579. geheyi@sina.com

Download English Version:

https://daneshyari.com/en/article/5491341

Download Persian Version:

https://daneshyari.com/article/5491341

<u>Daneshyari.com</u>