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Magnetic resonance fingerprinting (MR fingerprinting or MRF) is a newly introduced quantitative magnetic res-
onance imaging technique, which enables simultaneous multi-parameter mapping in a single acquisition with
improved time efficiency. The current MRF reconstruction method is based on dictionary matching, which may
be limited by the discrete and finite nature of the dictionary and the computational cost associated with dictio-
nary construction, storage and matching.
In this paper, we describe a reconstruction method based on Kalman filter for MRF, which avoids the use of dic-
tionary to obtain continuous MR parameter measurements. With this Kalman filter framework, the Bloch equa-
tion of inversion-recovery balanced steady state free-precession (IR-bSSFP)MRF sequencewas derived to predict
signal evolution, and acquired signal was entered to update the prediction. The algorithm can gradually estimate
the accurateMR parameters during the recursive calculation. Single pixel and numeric brain phantom simulation
were implemented with Kalman filter and the results were compared with those from dictionary matching re-
construction algorithm to demonstrate the feasibility and assess the performance of Kalman filter algorithm.
The results demonstrated that Kalman filter algorithm is applicable for MRF reconstruction, eliminating the need
for a pre-define dictionary and obtaining continuous MR parameter in contrast to the dictionary matching
algorithm.
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1. Introduction

MR fingerprinting, or MRF, offers efficient means to obtain multiple
quantitative maps, such as T1, T2 and off-resonance, within a single se-
quence by matching the acquired signal with a pre-defined dictionary
[1]. In MRF, a pseudorandom TR and flip angle is used to generate
unique signal evolution for each tissue,which reflects the inherent char-
acters of the tissue. The acquired signal evolution is looked up in a dic-
tionary generated by Bloch simulation with the TR and flip angle
patterns same as that used in acquisition. It provides a promising ap-
proach for fast acquisition and quantitative imaging. Currently MRF
has been explored in several applications includingquantitative abdom-
inal imaging [2], and cardiac imaging [3].

In the current dictionary-matching algorithm, the dictionary needs
to be regenerated once the sequence or acquisition parameters change,
which causes extra calculation time andmemory cost. On another hand,
dictionary matching introduces round off error because of discrete pa-
rameter space. Tradeoff between dictionary size and quantization

error needs to be considered. Several studies have investigated the ac-
quisition sequence, dictionary generation, and matching algorithm to
overcome these problems. Fast imaging with steady state precession
(FISP) sequence was used instead of balanced steady state free-preces-
sion (bSSFP) sequence to reduce dictionary size by eliminating off-reso-
nance term [4]. Tree-Structured Vector Quantizer (TSVQ) reduced
dictionary size by applying k-means clustering to training set recursive-
ly instead of taking grid points in the parameter space [5]. Maximum
likelihood (ML) reconstruction was explored by taking conventional
dictionary results as initializations and approaching ML optimum in
the subsequent iterations to improve accuracy [6]. However, all these
reconstruction methods were based on the framework of dictionary
matching, so they more or less encounter the inherent problems such
as the tradeoff between the dictionary size and the accuracy. If more pa-
rameters maps are considered in the signal model, the dictionary size
will increase exponentially, which further exacerbates the problem.
Moreover, the size of dictionary is strictly limited in some applications
such as cardiac triggered scan, which need a new dictionary every
time because the TR patterns are dictated by heart rate [3].

In this paper, we introduce a Kalman filter based reconstruction al-
gorithm to recursively derive the MR parameters from acquired MRF
data with the signal model of acquisition sequence, providing an
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alternative to dictionary matching to avoid problems associated with
dictionary generation. A preliminary result was presented in [7].

2. Theory

2.1. Kalman filter algorithm

The Kalman filter is an algorithm using a series of measurements to
estimate the state of the system over time, resulting in a more accurate
estimation than a single measurement [8]. The Kalman filter was first
implemented in the Apollo program, where it played an essential role
in the Apollo navigation system [9]. It was then widely used in many
fields, including the Global Positioning System (GPS) [10] and other
fields of signal processing. In most applications, the internal state has
more degrees of freedom than the measured parameters. However,
based on the measurements and the underlying physics governing the
system, the Kalman filter combines all the information and provides
an accurate estimation of the unknown parameters of the system. Tak-
ing the space shuttle as an example, the acceleration and angles be-
tween stars can be obtained by an onboard inertial navigator [9].
When using the additional information from the laws of motion, the
Kalman filter can obtain the position and velocity of the space shuttle,
making it stay in the right orbit.

It is a very similar situation when it comes to MRF, where the
physics laws governing the signal model is no longer laws of motion,
but Bloch equation. If we put unknown parameters (spin–lattice re-
laxation time T1, spin–spin relaxation time T2, off-resonance fre-
quency df) and Mz, as well as the measured MR signal (Mx ,My)
together to form a joint state vector [11], it is possible for Kalman fil-
ter to simultaneously track the evolution of magnetization vectors
and estimate the parameters underlying the physics model. Thus,
we first define the unknown parameter vector pk=[T1,T2,df]T, we
then have the joint state vector

Sk≜ MT
k ;p

T
k

h iT
¼ Mxk;Myk;Mzk; T1; T2; df½ �

T

ð1Þ

where Mxk ,Myk ,Mzk represent magnetization along three axis at
time point k.

To use Kalman filter algorithm, two functions are needed. One is the
system dynamic function fk(S) which describe the relationship between
the joint state vector at an arbitrary time point and that at subsequent
time point. The other is the observation function H which describes
how the observation yk=[Mxk,Myk]T is linked to the joint state vector
Sk. We have

Sk ¼ f k Sk−1ð Þ þ vk
yk ¼ HSk þwk

ð2Þ

where vector vk∈R6×1 and wk∈R2×1 represent the additive Gaussian
white process noise andmeasurement noise, respectively [12]. The pro-
cess noise vk and themeasurement noisewk are zeromeanmultivariate
normal distributions with covariance matrices Qk and Rk, respectively.
Generally speaking, the process noise vk represents other effects that
are notmodeled (to reduce the complexity ofmodel), and themeasure-
ment noise wk represents the noise associated with the measurement.
These noise levels are estimated empirically before the recursive algo-
rithm and have a significant effect on the calculation of Kalman gain,
as described in Appendix A. More specifically, the process noise vk rep-
resents any other effects than T1, T2 relaxation and the precession due
to off resonance, which are not included in our signal model, such as
RF imperfection. In the simulation here, since the standard deviation
of measurement noise is preset, the measurement noise matrix Rk is
also known, but in practice it needs to be empirically estimated.

The Kalman filter is a recursive algorithm, including two steps: pre-
dict and update. As shown in Fig. 1, in the predict step, the system dy-
namic function fk(S) is used to predict the joint-state vector Sk at the

next time frame NðŜk∣k−1; Pk∣k−1Þ (prediction, also known as priori). In
the update step, an observation yk′ at k step is used to adjust the predic-

tion of the predict step and estimate the joint state vector NðŜk∣k; Pk∣kÞ
(estimation, also known as posteriori). Please note that the prediction
and estimation are represented by mean and covariance and are deter-
ministic in the recursive calculation,while the joint-state vector Sk in Eq.
(2) is an unknown random variable. Similarly, the actual observation yk′
is the collected data and deterministic while the observation yk in Eq.
(2) is also an unknown random variable. The Kalman gain K is a weight
that determines how to combine the observation and the prediction,
which is calculated from the covariance matrices of the observation
and the prediction. The detailed Kalman filter algorithm including
how to calculate Kalman gain is described in Appendix A for further
reading.When the predicting-updating cycle is repeated, the covariance
of joint-state vector gradually decreases, and the estimated value of
joint-state vector converges to its true value. In the next sections, we
will describe how the system dynamic function and the observation
function are derived.

2.2. System dynamic function

The system dynamic function describes how themagnetization vec-
tor and theMR parameters change as a function of time, which is based
on Bloch equation. It contains the physics model underlying the MRF
signal, and it is used in the predict step of Kalman filter cycle. As such,
it represents the basic physics model in the Kalman filter algorithm
framework.

To derive the system dynamic function,we can focus on the signal at
an arbitrary time point, k− 1, and the one at the subsequent time point,
k. From the middle of the TR(k − 1), the magnetization vector evolves

Fig. 1. Flow chart of Kalman filter algorithm.
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