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To quantify intragastric fat volume and distribution with accelerated magnetic resonance (MR) imaging using
signal model-based dictionaries (DICT) in comparison to conventional parallel imaging (CG-SENSE). This study
was approved by the local ethics committee andwritten informed consent was obtained. Seven healthy subjects
were imaged after intake of a lipid emulsion and data at three different time points during the gastric emptying
process was acquired in order to cover a range of fat fractions. Fully sampled and prospectively undersampled
image data at a reduction factor of 4 were acquired using amulti gradient echo sequence at 1.5T. Retrospectively
and prospectively undersampled data were reconstructed with DICT and CG-SENSE. Image quality of the retro-
spectively undersampled data was assessed relative to the fully sampled reference using the root mean square
error (RMSE). In order to assess the agreement of fat volumes and intragastric fat distribution, Bland-Altman
analysis and linear regression were performed on the data. The RMSE in intragastric content (ΔRMSE =
0.10± 0.01, P b 0.001) decreased significantly with DICT relative to CG-SENSE. CG-SENSE overestimated fat vol-
umes (bias 2.1 ± 1.3 mL; confidence limits 5.4 and−1.1 mL) in comparison to the prospective DICT reconstruc-
tion (bias −0.1 ± 0.7 mL; confidence limits 1.8 and −2.0 mL). There was a good agreement in fat distribution
between the images reconstructed by retrospective DICT and the reference images (regression slope: 1.01,
R2 = 0.961). Accelerating gastric MRI by integrating a dictionary-based signal model allows for improved
image quality and increases accuracy of fat quantification during breathholds.

© 2016 Elsevier Inc. All rights reserved.

Keywords:
Water-fat separation
Fat quantification
Compressed sensing
Parallel imaging
Gastric emptying
Fat digestion

1. Introduction

Magnetic resonance (MR) imaging in conjunction with water-fat
separation techniques provides a robust measurement method of in
vivo fat fractions [1–3]. Fat fraction mapping using the iterative decom-
position of water and fat with echo asymmetry and least-squares esti-
mation (IDEAL) has proven useful in studies which quantified fat
content of the liver [4–6] and skeletal muscle [7,8].

MRI of gastrointestinal (GI) function is an establishedmodality to as-
sess intragastric food distribution and emptying [9]where the in vivo fat
quantification plays a key role. To this end, MRI has the ability to apply
quantitative measures of how ingested fat is processed and emptied
from the stomach [10,11]. In particular, information regarding the

creaming of ingested fat emulsions can be non-invasively obtained
[12,13], which provides information that is of interest from both a
food engineering and clinical perspective [14–16].

Although MR GI tract imaging has many advantages, scan duration
in abdominal imaging is often constrained. This constraint is due to
breathholding, which is required to suppress respiratory motion. Long
breathhold times can be difficult for some patients resulting in reduced
subject compliance and hence reduced image quality. Therefore, imag-
ing efficiencymust be improved by employing undersampling schemes.
Parallel imaging (PI) [17] and compressed sensing (CS) [18] reconstruc-
tion exploit the spatial sensitivities of multiple receiver elements and
the sparsity of the images, respectively. They provide the basis for ele-
gant joint schemes, which incorporate water-fat separation directly
into the reconstruction process [19–22]. So far, only one prospective
undersampled fat fraction quantification technique has been investigat-
ed and used to quantify muscle fat in the leg [23]. Although promising,
employing undersampling techniques in gastric imaging creates new
image processing challenges since the stomach contracts at irregular in-
tervals and there is continuous movement or emptying of intragastric
content [24].

The conventional CS framework assumes sparsity in image space or
a transformation thereof using a fixed, global sparsity transform such as
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Wavelets [18]. The use of one particular transform domain for very dif-
ferent anatomical configurations is, however, not optimal and thus
might compromise image quality. The use of signal model-based dictio-
naries has recently gained interest as an alternative to the conventional
CS framework [25], allowing the sparsity to be tailored to a specific class
of images [26,27]. The sparsity is enforced in image space, assuming that
local image features can be described by a set of patches in a sparsifying
dictionary.MRparametermapping,wheremultiple acquisitions are col-
lected to derive quantitativemaps, is an application of this concept. Sim-
ilar to the time domain in dynamic imaging, thesemultiple acquisitions,
each acquired at a different parameter value, span a third encoding di-
mension. By applying prior knowledge along this parameter encoding
dimension using a signal model, sparsity can thus be enforced. This var-
iant of CS in parameter space has been applied to themapping of relax-
ation times [28–31], where e.g. T1 maps are reconstructed using an
inversion-recovery signal model.

In the present study, the reconstruction of fat fraction maps by ap-
plying a water-fat signal model along the echo time dimension is pro-
posed to enable improved intragastric fat quantification in terms of
volume and distribution. Themethod is demonstrated on retrospective-
ly and prospectively undersampled data obtained in healthy subjects
after intake of a lipid emulsion drink and compared to conventional par-
allel imaging reconstruction.

2. Materials and methods

2.1. Sampling pattern

Prospectively undersampled data was acquired at a reduction factor
R=4 using a one-dimensional (1D) undersampling pattern as depicted
in Fig. 1a,whichwas identical for all echoes. Since PI reconstruction per-
formance depends on the sampling pattern [32], a uniform
undersampling pattern, which acquires every Rth phase-encoding ky-
line, was modified by randomly shifting ky-lines by−1, 0, or +1 posi-
tion along ky for the outer (82%) of k-space. This allowed for a conven-
tional PI reconstruction approach while exploiting incoherence
required for CS schemes.

2.2. Signal model-based dictionary

The signal evolution in a multiple echo image series with N different
echo times TEn can be described by a signal model that is based on the
spectral multipeak model of the fat of interest with its relative ampli-
tudes βp and chemical shifts Δ fp of the p-th peak. To this end, the spec-
tral fat model was adapted to the spectrum of rapeseed oil (Fig. 1b) as
used in the emulsion for in vivo imaging in the present study with its
multiple peaks assigned according to [33]. The resulting signal model
for each voxel consists of a water and fat component, weighted by

their respective water densities ρw and fat density ρf [3],
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where the phase term represents the complex field map and accounts
for T2⁎ decay and B0 inhomogeneity ψ of each voxel. Relative fat and
water ratios can be replaced in Eq. 1 by the fat fraction ff=ρf/
(ρf+ρw) of the voxel to yield the dimensionless signal model,
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and expressed by s′(ff,ψ,T2⁎)=[s1′(ff1,ψ1,T2,1⁎) … sN′(ff1,ψ1,T2,1⁎)]T as a
vector. In practice, s′(ff,ψ,T2⁎) needs to be normalized, which is already
assumed here for simplicity (‖s′(ff,ψ,T2⁎)‖=1). This 3-parameter
model can be represented using an overcomplete dictionary by
inserting it into the following equation,
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where α is the transform domain, D is the transform matrix or dictio-
nary and the parameters ff, ψ, T2⁎ are discretized into the respective
lengths L1, L2 and L3. Each atom in the dictionary thus represents one
possible normalized signal evolution corresponding to a specific ff, ψ
and T2⁎ value and α represents the scaling factor related to the signal
magnitude. By finding the dictionary atom with the best match to the
measured echo image series, contributions from aliased signals arising
from undersampling can be removed.

2.3. Reconstruction of echo images

Reconstruction was performed using Matlab R2015a (MathWorks,
Natick, MA). For conventional PI reconstruction, conjugate gradient
SENSE (CG-SENSE) [17] with Tikhonov regularization [34] to improve
stability was used, which solves the minimization problem,

argmin
i

FuSi−dk k22 þ λT ik k2 ð4Þ

where d is the acquired k-space data, i is the reconstructed image, S are
coil sensitivities for a sensitivity-weightedmulticoil image combination
[35] and Fu is the undersampled Fourier transform operator, which
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Fig. 1. a: Data acquisition scheme in Cartesian space. A regular undersampling pattern in the center and randomly shifted phase-encoding ky-lines in outer k-spacewas applied, whichwas
identical for all echoes. Acquired data lines are shown inwhite. b: Spectrum of rapeseed oil. An 8-peak fat model was identifiedwith the corresponding chemical shifts. c: Individual data-
driven weighting functions derived from fat fraction histograms.
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