Accepted Manuscript

Transverse relaxation of cerebrospinal fluid depends on glucose concentration

A. Daoust, S. Dodd, G. Nair, N. Bouraoud, S. Jacobson, S. Walbridge, D.S. Reich, A. Koretsky

PII: S0730-725X(17)30153-4

DOI: doi: 10.1016/j.mri.2017.08.001

Reference: MRI 8815

To appear in:

Received date: 18 April 2017 Revised date: 28 July 2017 Accepted date: 2 August 2017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Title

Transverse relaxation of cerebrospinal fluid depends on glucose concentration

Author names and affiliations

A. Daoust¹, S. Dodd¹, G. Nair¹, N. Bouraoud¹, S. Jacobson¹, S. Walbridge¹, D. S. Reich¹ and A. Koretsky¹

¹ National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, United States

Alexia Daoust, alexia.daoust@nih.gov Steven Dodd, doddst@ninds.nih.gov Govind Nair, govind.bhagavatheeshwaran@nih.gov Nadia Bouraoud, bouraoudn@ninds.nih.gov Stephen Jacobson, JacobsonS@ninds.nih.gov Stuart Walbridge, stuartwalbridge@mail.nih.gov Daniel S. Reich, reichds@ninds.nih.gov Alan Koretsky, KoretskyA@ninds.nih.gov

Corresponding author

Dr Alexia Daoust, PhD Institute of Neurological Disorders and Stroke, National Institutes of Health, Building 10, room ID52, 10 center drive, Bethesda, MD 20892, United States

Tel: 301-594-7314

Email: alexia.daoust@nih.gov

Abstract words count: 244
Text words count: 5410

Tables: 2 Figures: 6

Supplemental information: 4

References: 40

Key-words

MRI, relaxation time, CSF, human, monkey, rodent

Abbreviations

CNR: contrast to noise ratio

CPMG: multiecho Car-Purcell-Meiboom-Gill

CSF: cerebrospinal fluid T₁: longitudinal relaxation time T₂: transversal relaxation time

ACKNOWLEDGEMENTS

This study was supported by the Intramural Research Program of the National Institute of Neurologic Disorders and Stroke (NINDS), National Institutes of Health.

Download English Version:

https://daneshyari.com/en/article/5491430

Download Persian Version:

https://daneshyari.com/article/5491430

<u>Daneshyari.com</u>