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A B S T R A C T

We investigate the low-energy spectral properties of the Kitaev model on the Kagome lattice, which is a
quantum spin model for the aim of fault-tolerant quantum computation, in the presence of a uniform magnetic
field in the x- and z-directions. We explore the low-energy physics of the Kitaev model in the x- and z-magnetic
fields, separately and establish a quasi-particle picture for anyonic excitations. Our study is based on the high-
order series expansion of the low- and high field limits of the problem by means of perturbative continuous
unitary transformations. We further show that the Kitaev model in the x-field is mapped to the Ising transverse
field (ITF) model on the triangular lattice while, the system is mapped to another ITF model on the honeycomb
lattice in the presence of the z-magnetic field. Additionally, we investigate the phase transitions of the model for
the two cases and find that the topological phase of the Kitaev model breaks down to the polarized phase in
either x- or z-directions by a second-order quantum phase transition in the 3D Ising universality class. We
further detect dispersive bound states in high-field limits of the model for both cases of the magnetic field. The
overall results further indicate that the Kitaev model on the Kagome lattice has the different stability as the toric
code on the square lattice, while perturbed by magnetic fields.

1. Introduction

In condensed matter physics, conventional phases of matter are
characterized by their atomic structure or internal order. The
Ginzburg-Landau symmetry-breaking theory associates this internal
order to the symmetry and attempts to present a general theory to
classify all phases of matter based on their symmetries [1]. Changing
the local order by tuning a physical quantity such as temperature or
magnetic field, would results in spontaneous breaking of symmetry at a
critical point and the material undergoes a phase transition. For years,
it was believed that the Landau theory is the standard model for
characterizing every possible phases of matter until 1982 that the
discovery of the Fractional Quantum Hall Liquid (FHQ) by Tsui et al.
[2] came as a big surprise. The order in this new phase was not related
to any kind of symmetry. Therefore the Landau's theory was not
capable of describing this new phase based on the symmetries. Novel
properties of the FHQs such as edge states and the degeneracy of the
ground state which was related to the topology of the space, led
physicists to introduce a new kind of order by resorting to topological
quantum numbers which characterized this new phase. The new order
was therefore distinguished as topological order [3,4].

Later on, more examples of systems with topological order emerged

in superconducting states [5,6], short range resonating valence bonds
[7–10] and quantum spin models [11–19] as well as several proposals
for experimental implementation of spin systems on optical lattices
[20–22]. Highly entangled states and robustness of electronic states in
topologically ordered systems [23,24] further attracted scientists of
quantum information field to define non-local quantum bits on the
topological degrees of freedom and protect information from decoher-
ence [25–27]. The central idea behind this non-locality was to
distribute the quantum entanglement between many different particles
in such a way that it can not be destroyed by local perturbations. The
first exactly solvable quantum spin model with topological protection
was the toric code [25] by Kitaev which was designed on a four valent
lattice wrapped around a torus with arbitrary genus and used the
topologically degenerate ground state of the system to describe a robust
quantum memory. The ground state of the system was separated from
the excited states by a gap and the excitations were anyonic quasi-
particles with exotic statistics. Most interestingly, braiding of the non-
Abelian anyons could be used to generate unitary quantum gates,
making toric code as a rich test ground for fault tolerant quantum
computation [28–30].

Aside from interesting characteristics of the quantum codes for
fault-tolerant quantum computation, there are many questions about
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other physical properties of such topological phases, from many-body
or rather condensed matter physics aspects of view. Investigating the
low-energy effective theory of toric code on the square lattice [31,32]
and its phase transitions in magnetic field [33–37] and several
experimental proposals for detection of anyonic excitations on optical
lattices [38,39], have been the subjects of different studies to answer
some of the questions about this model. However, there are still lots of
unanswered question that should be the motivation for further studies.

The aim of the present work is to investigate the low-energy spectral
properties of Kitaev model on the Kagome lattice in the presence of
uniform magnetic fields in the x- and z-direction and shed light on the
physics of the perturbed Kitaev model on the Kagome lattice. We study
the low-energy spectral properties of the Kitaev model in two different
magnetic fields by using high-order series expansion of the low- and
high-field limits of the problem and present a quasi-particle (QP)
picture for the anyonic excitations. Additionally, we provide exact
mappings for the problem and show while the Kitaev model in the
x-field is mapped to ITF model on the triangular lattice, the model is
mapped to another ITF model on the honeycomb lattice in the presence
of the z-field. We further investigate the quantum phase transitions and
dynamics of the model by setting up a QP picture. As we shall see, the
high-field limits of the problem turns out to have very interesting
characteristics such as emergence of dispersive bound states in the
system. Finally, we compare our results with those of the toric code on
the square lattice.

The paper is organized as follows: In Section 2, we review the
structure of the Kitaev model on the Kagome lattice and the relevant
properties of the system which are mostly used in the rest of the paper.
The perturbed models with x- and z-magnetic fields are introduced in
Section 3. We further describe the mapping of the model to two
different ITF model in Section 4 and we present the high-order series
expansions of the low- and high-field limits for both magnetic fields in
the x- and z-direction in Section 5. The next Section 6 is devoted to the
discussion on the phase transitions out of the topological phase of the
Kitaev model. Eventually, the paper ends with conclusion in Section 7.

2. Model

Consider a two dimensional Kagome lattice where spin 1
2
particles

are placed on its vertices (Fig. 1) and the interactions between the spins
are tuned with the following Hamiltonian [40]

∑ ∑H J A J B= − −v
v

v p
p

p
(1)

where, A σ= ∏v i v i
x

ϵ is vertex operator acting on the spins around a
triangle, B σ= ∏p j p j

z
ϵ is plaquette operator acting on hexagons and σ x z( )

are standard Pauli matrices. The vertex and plaquette operators share
nothing or even number of sites and therefore commute with each
other, A B[ , ] = 0v p , leading to the exact solvability of the Hamiltonian
(1).

The vertex and plaquette operators squares to identity,
A B 1( ) = ( ) =v p

2 2 , and their eigenvalues are therefore given by ± 1.
Setting J J, > 0v p , ground state of the Hamiltonian (1) correspond to a
state where all eigenvalues of vertex and plaquette operators are equal
to +1 with ground state energy E J N J N= − −v v p p0 which for a Kagome
lattice with N3 sites (N plaquette, N2 vertex) is equals to
E NJ NJ= −2 −v p0 . Excitations of the model further corresponds to −1
eigenvalues of the vertex and plaquette operators. The system is
therefore gapped. Hereafter we set J J J= =v p , therefore the first
excited state of the system corresponds to one of vertices or plaquettes
being violated (with −1 eigenvalue) which has JN2 v p, energy cost.

Beside the vertex and plaquette operators, there are other entities
on lattice, called string operators which are generalization of the vertex
and plaquette operators. The strings can be open or closed and string
operators are constructed as the product of Pauli spins on the string
(see Fig. 1). Closed strings always commute with the vertex and
plaquette operators. However, if they are open, they anti-commute
with vertex and plaquette operators at their end points and create a
pair of excitations, the so-called anyonic charges and fluxes on the
corresponding vertex and plaquettes. These charges and fluxes are
deconfined quasiparticles (QP) of the model which are hardcore bosons
and has mutual semionic statistics [41].

Wrapping the system around a torus, a new class of closed strings
i.e. the global strings appear for every homology class of the torus
which are not the product of plaquette and vertex operators but still
commute with them. As will be seen shortly, these global strings are
responsible for the topological degeneracy of the ground state of the
system.

Starting from a polarized spin background, the very general form of
the ground state of the system is constructed as follows:

∏ψ A= (1 + ) 0gs
v

v
N⊗

(2)

where is a normalization constant and 0 is the eigenstate of the σz
Pauli operator with +1 eigenvalue. This state is a superposition of the
strongly fluctuating closed strings or a string condensate. Such a
configuration can be visualized by the product of all vertex operators
acting on the polarized spin background of the system. This is a feature
which is found in systems with topological order [24].

As we have previously outlined, the global strings of the manifold
commute with the vertex and plaquette operators while they are not the
product of those operators. As a result, any string state which is
generated from the action of global strings on the ground state (2) is a
topologically degenerate ground state of the system. The Kitaev model
has two independent global loops of each homology on the Kagome
lattice wrapped around a torus of g=1 which leads to a 4-fold
degenerate ground-space (see Fig. 2).

3. Kitaev model in magnetic field

In order to reveal the physics of the Kitaev model and to investigate
its spectral properties in a magnetic field, we add two magnetic field
terms in different directions to the Hamiltonian (1). However, we
investigate each case separately in the small- and large-field limits. The
Hamiltonian of the Kitaev model in the presence of magnetic fields
reads:

∑ ∑ ∑ ∑H J A J B h σ h σ= − − − −
v

v
p

p x
i

i
x

z
i

i
z

(3)

where h h,x z represent magnetic field strength in the x- and z-direc-

Z

Z

X

X

Fig. 1. A scheme of two-dimensional Kagome lattice. Empty and filled circles represent
spin 1

2
with different directions. X and Z quasi-particle excitations appear at the end

points of open strings.
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