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A B S T R A C T

The spin-coupled interface (SI) resistance plays a crucial role in the interpretation of the giant magnetoresis-
tance with current perpendicular to the plane. Recently, a theoretical work showed that its Joule heat also
equals the total spin-dependent heat generation in a conceptual spin valve. Here we reexamine this conclusion
in a practical spin valve with a finite nonmagnetic spacer layer and spin-selective interfaces. It turns out that this
conclusion does not hold except for some special segments. The SI resistance has a more serious limitation: it
may be negative in certain situation. In-depth analysis shows that its “Joule heating” should be interpreted
actually as the extra energy supplied only in the ferromagnetic layers and at the interfaces. This extra energy is
stored in the chemical-potential splitting due to spin accumulation and only part of it converts into heat locally.
The rest flows to other layers, especially the nonmagnetic layer, in which the inflowing energy compensates
exactly for the spin-dependent heat generation. In essence, this kind of energy transport makes the SI resistance
unsuitable for a simple description of the heat generation, and thus we propose a new effective resistance as an
alternative to it.

1. Introduction

Heat generation is a serious issue even for spintronic devices. [1–3]
For example, large current is usually required for the operation of a
spin-transfer-torque magnetic random-access memory. [4] The reduc-
tion of the working current and the associated heating is still a
challenging problem. Moreover, heating in spintronic devices leads to
temperature gradient, which may inversely have remarkable influence
on the spin transport via the spin-dependent Seebeck effect [5].

Recent theoretical investigations have shown that there is still
energy dissipation even if a pure spin current is present. [6–10]
Meanwhile, experimental studies have also demonstrated various
spin-dependent heating effects. [11–18] In spintronic devices, the
spin-dependent processes produce extra heat in comparison to the
conventional electronic devices. [6] Using a macroscopic approach,
Ref. [6] also showed that the extra heat is equal to the Joule heat of the
spin-coupled interface (SI) resistance in a conceptual spin valve. The SI
resistance plays a crucial role in the interpretation of the giant
magnetoresistance with current perpendicular to the plane (CPP).
[19–21] However, Ref. [6] neglected the nonmagnetic (NM) spacer
layer and the interface resistance of the spin valve. This raises doubt on
the validity of their result in a practical spin valve with a finite NM
layer. The following qualitative analysis shows the limitation of the SI

resistance when it is used to describe heat generation. The SI resistance
is zero in the NM layer owing to the absence of extra field. [21,22]
However, the NM layer has extra heat generation due to spin transport.
Thus the “Joule heat” of the SI resistance is unequal to the spin-
dependent heat generation in the NM layer.

Motivated by the preliminary analysis above, we propose an
alternative to the SI resistance in this work. First we examine whether
the spin-dependent heat generation is equal to the “Joule heat” of the
SI resistance in an arbitrary segment of a practical spin valve, which
includes a finite NM layer and spin-selective interfaces. As we will
prove later, they are not equal except for some special segments. The SI
resistance has a more serious limitation: it may even be negative in
some cases. Then we reveal the real meaning of the “Joule heat” of the
SI resistance and analyze the reasons for its limitations. Finally, we
propose a new effective resistance based on the spin-dependent heat
generation as the alternative to the SI resistance.

This paper is organized as follows. In Section 2, we derive the basic
equations for the spin-dependent heat generation and energy trans-
port. We also show the limitation of the SI resistance. In Section 3, the
basic equations are applied to a spin valve. We discuss the real meaning
of the SI resistance and propose the effective resistance as an
alternative. Our main results are summarized in Section 4.
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2. Basic equations

2.1. Separating the spin-dependent heat from the normal heat

We are concerned with the heat generation in a CPP spin valve
driven only by a constant current of density J flowing in the positive z-
direction. [21] In the stationary state, the heat generation rate can be
calculated using a macroscopic equation like Eq. (6) in Ref. [6]
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where we use σheat to denote the heat-generation rate following Ref.
[23]. This kind of equation can be derived by using the Boltzmann
equation [6] as well as nonequilibrium thermodynamics [23] in the
linear regime. In Eq. (1), J+ (J−) and μ μ( )+ − are the current density and
the electrochemical potential in the spin-up (down) channel, respec-
tively (see Appendix A). The electron-number current is given by

J e− /± , where e− is the charge of an electron. Moreover,
Δμ μ μ= ( − )/2+ − describes the spin accumulation, and Gmix defined by
Eq. (5) of Ref. [6] stands for the associated spin-flip rate. The first two
terms of Eq. (1) can be interpreted as the rate of decrease in the
(electrochemical) potential-energy current or the heat generation, in
each spin channel. [24] The last term means the heat generation due to
the spin-flip scattering [6].

Eq. (1) can be rewritten in a more convenient form. The heat-
generation rates of the two spin channels are unequal in ferromagnetic
(FM) layers and at spin-selective interfaces. If the two spin channels
cannot exchange heat effectively with each other or other heat
reservoir, they may have different temperatures. [25] However, this
is beyond the scope of the present work and we will neglect this effect
by assuming that the two spin channels can exchange heat effectively
(the thermalized regime [25]). Then it is more meaningful to write Eq.
(1) in terms of the total current J J J= ++ − and the spin current
J J J= −spin + − like Eq. (12c) of Ref. [6]
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where μ = (μ + μ )/2+ − is the average electrochemical potential. One can
further rewrite Eq. (2) as
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by defining the effective field [21]
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The heat generation due to interface resistance is only caused by the
spin-conserving scattering since the spin-flip scattering is neglected
(Appendix B). Then it can be calculated by simply summing the two
spin channels [6]
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± C
− is the change in electrochemical poten-

tial across the (infinitesimally thin) interface at zC for spin “ ± ”. One
can also rewrite Eq. (5) in a more convenient form
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where we have used Eq. (B.4).
Up to now, we have outlined some results of Ref. [6] as a basis for

our study. Since we are mainly interested in the spin-dependent heat
generation, we need to separate it from the normal Joule heat in Eqs.
(3) and (6). The normal Joule heat exists no matter whether spin
accumulation is present or not, whereas the spin-dependent heat
depends on the spin accumulation and the spin current.

In NM layers, the field F is just the unperturbed constant field
E ρ J= *0

N
N according to Appendix A or Ref. [21]. Then the normal Joule

heat is just the first term of σheat in Eq. (3)
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The second term of σheat is the spin-dependent heat generation
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which relies on both the spin accumulation and the spin current.
In FM layers, by summing the “ ± ” versions of Eq. (A.2), we can

write the field F as
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where the sign “+” (“-”) corresponds to the “up” (“down”) magnetiza-
tion. The bulk spin asymmetry coefficient β is defined in Appendix A.
Note that Δμ also depends on the magnetization direction. In Eq. (9),
the field F of the FM layer has been divided into the constant term
E β ρ J= (1 − ) *0

F 2
F and the exponential term, which depends on the

gradient of spin accumulation. Thus the first term of σheat in Eq. (3) is
not entirely the normal Joule heat and needs to be rewritten. To this
end, we subtract the “ ± ” versions of Eq. (A.2), and write Jspin as
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where the bulk and exponential terms are defined as
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The sign “-” (“+”) corresponds to the “up” (“down”) magnetization.
Substituting Eqs. (9) and (10) into Eq. (3), we find
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where we have divided the heat generation into
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We can identify σheat
norm,F and σheat

spin,F as the normal Joule heat and the
spin-dependent heat, respectively. [6] In fact, Eq. (13) has the same
form in the NM layer, where β is zero and Jspin has only exponential
terms, J J=spin spin

exp (Appendix A). This allows us to combine the
equations for the FM and NM layers into one common equation
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which yields the same value as Eq. (3) but has more transparent
physical interpretation.

At interfaces, the sum of the “ ± ” versions of Eq. (B.2) yields
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where J z( )spin
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C is defined by
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The upper (lower) signs of “ ± ” and “∓” in Eqs. (17) and (18)
correspond to the configuration where the spin-up channel is the
minority (majority) one. The first term of J z( )spin C in Eq. (18), γJ∓ ,
stands for the normal spin current without spin accumulation, whereas
J z( )spin

sa
C means the spin current resulting from the change of spin

accumulation across the interface (Appendix B). Therefore, the first
term of Σheat

C in Eq. (6) is not entirely the normal Joule heat and also
needs to be rewritten. To this end, we subtract the “ ± ” versions of Eq.
(B.2) and get
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