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A B S T R A C T

The aim of this work is to describe the electronic and magnetic properties of graphene in a constant magnetic
field, in the long wavelength approximation with random disorder. Taking into account the Zeeman effect, the
electronic density of states for each spin is found and the de Haas van Alphen oscillations (dHvA) are found. The
magnetic field is found to modulate the de Haas-van Alphen magnetization through the ratio of the Zeeman
coupling and pseudospin-Landau coupling. In turn, the Pauli magnetization is studied showing that the Zeeman
splitting and disorder introduces a dHvA oscillation period that depends on the magnetic field strength and
generalizes the Onsager relation. In turn, a beat frequency appears that does not depend on B but increase
linearly with the chemical potential. These results, which are different from those obtained in the standard
nonrelativistic 2D electron gas, are attributed to its anomalous Landau level spectrum in graphene.

1. Introduction

Since its experimental isolation in 2004, graphene has become one
of the most studied and promising material in solid state physics ([1–
3]). Its interesting properties lie in his 2D hexagonal structure, made of
two interpenetrating sublattices A and B that act as a pseudospin
degrees of freedom [4]. With no impurities or defects, the conduction
and valence bands touch at two inequivalent points at the corners of
the Brillouin zone with the valence band full and the conduction band
empty in the ground state [3]. Furthermore, in pristine graphene the
density of states at the Fermi energy is zero, and thus the graphene is a
semiconductor with zero band gap, or a semi-metal [5]. When a
magnetic field is applied to graphene, discrete Landau levels are
obtained [6] and these are not equidistant, as in classical electron
gas. In turn, the large distance between the fundamental and first
excited Landau levels allows the Quantum Hall effect to be observed in
graphene at room temperatures ([7–9]). Moreover, the Landau levels
create an oscillating behavior in the thermodynamics potentials. It is
found that the magnetization oscillates as a function of the inverse
magnetic field, the so called de Haas van Alphen effect (dHvA)
([10,11]). The different frequencies involved in the oscillations are
related to the closed orbits that electrons perform on the Fermi surface
[12] and is a powerful tool for mapping the electronic states at the
Fermi energy [13]. It has been predicted in graphene that magnetiza-
tion oscillates periodically in a sawtooth pattern, in agreement with the

old Peierls prediction [14], although the basic aspects of the behavior of
the magnetic oscillations for quasi-2D materials remains yet unclear
[15]. In contrast to 2D conventional semiconductors, where the
oscillating center of the magnetization M remains exactly at zero, in
graphene the oscillating center has a positive value because the
diamagnetic contribution is half reduced with that in the conventional
semiconductor [16]. From an experimental point of view, carbon-based
materials are more promising because the available samples already
allows one to observe the Shubnikov-de Haas effect ([17,18]) and then
may be easier to interpret the quantum oscillations in its transport
properties. Because the dHvA signal in 2D systems are free of the kz
smearing, it should be easier to obtain much rich information about the
electron processes. On the other side, it is well known that pristine
graphene is ideal. Real world samples of graphene are essentially
impure, as they always contain some amount of resonant impurities or
ripples. Considering pristine graphene, these defects can break the
pseudospin symmetries, depending on the matrix elements in the
external potential [19]. The problem of scattering from subtitutional
impurities in the presence of a magnetic field does not have yet a
satifactory solution, although it is known that broadening of Landau
levels in the electronic density of states is good approximation valid in
weak magnetic fields [20]. This broadening has the technical advantage
that if one consider first the dHvA oscillations with Dirac delta shaped
Landau levels, the introduction of impurities implies to convolute the
different quantities of interest with the appropriate distribution func-
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tions [14]. However, this is a simplification that is only valid if all the
Landau levels have the same width. To obtain better theoretical
approximations in this work the Born approximation will be used to
compute the self-energies [21]. This work will be organized as follow:
In section II, the magnetic Green function with diagonal on-site
energies will be computed for graphene. In section III, single-site
approximation will be applied and a system of coupled Soven equation
will be found and solved. The discussion of the results is shown in
section IV and the principal findings of this paper are highlighted in the
conclusion. In Appendix the main theory used in the manuscript is
explained.

2. Single-site approximation

For a self-contained lecture of this paper, the self-consistent Born
approximation will be explained in this section in order to obtain the
generalization to the results obtained in [22], Eq. (68) to Eq. (72). The
Hamiltonian in the two inequivalent corners of the Brillouin zone in the
long wavelength approximation reads
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where π p eA= −i i i, being Ai the vector potential. This approximation
holds for E E< C where E v k t eV= ∼ ∼ 2.7C F C (see [22] above eq.
(24)). By considering that ByA = (− , 0, 0) and by writing the wave
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. This Hamiltonian can be

written in terms of two copies of identical valley Hamiltonians

H ω σ a σ a ω σ a σ a= ( + ) ⊗ ( + )L L0 +
†

− −
†

+ (3)

where σ σ iσ= ±x y± acts on the sublattice basis and where ω v=L F
eB
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is the cyclotron frequency. The tensor product is introduced to denote
the valley subspaces. In order to simplify the problem, we can consider
only the K valley. Because the magnetic field can interact with the spin
of electrons, then we can add the Zeeman Hamiltonian by adding the
spin space. Then, the Hamiltonian will be a 2×2 block diagonal matrix,
where the first block is for spin up and the second block for spin down,
both for the same K valley.1 The wave function can be written as
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where the coordinate representation of k n, is r k n e ϕ y| , = ( )ikx
n k, ,

where ϕ y( )n k, is the wave function of the harmonic oscillator.2
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and where H y( )n k, are the Hermite polynomials. After straightforward
manipulations, the eigen problem reduces to
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Then, the eigenvalues can be written as

s ω α ω nϵ = − +n
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where α =+ 1(−1) for the conduction (valence band), s =+ 1(−1) for the
spin up (spin down). The eigenfunctions read
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where L A=2 , where A is the area of the graphene sheet. In the basis
that diagonalize the Hamiltonian, the Green function reads
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where z is a complex number that can be written as z E is= + , where E
is the energy and s is some real and positive number. At this point we
can include disorder as random impurities in our model in the most
simple way in order to gain a physical understanding of its effects. By
considering an impurity potential in the coordinate representation (see
Eq. (59) of [22]) V r V δ r R I( ) = ∑ ( − )N

i
i0

=1 , where Ri are the random
positions of the impurities and I is the identity matrix, it can be shown
that when configurational averaging is applied over the random
positions of the impurities, the system restore translation invariance
and the configurational averaged Green function G can be written in
terms of the self-energy (see [24])

G k z G k Σ k z( , ) = [ ( ) − ( , )]0
−1 −1 (10)

where … means configurational averaging. In turn, it can be shown
that in the self-consistent Born approximation, the self-energy at first
order in the impurity concentration c N N= /i can be written as (see [24]
eq.(3.59))
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where we are neglecting skeleton diagrams where impurity lines
crosses and the sum in k represent the sum in all the quantum
numbers of the system. In the case of graphene with magnetic field,
our Hamiltonian depends on the momentum k in the x direction, the n
label of the Landau levels, the spin and conduction and valence band. If
we consider the sum over the Landau levels and k then last equation
becomes
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where the self-energy depends on the conduction-valence band and
spin and Q is the Landau level cutoff that is determined by the equation
ω ω Q E+ =Z L C. The impurity-averaged Green function
G α s n k z( , , , , ) can be written in the spectral representation as3
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where we have introduced the self-energy diagonal matrix elements
Σ z( )α s, . Eq. (12) contains four independent self-consistent equations for
the self-energies. Nevertheless, by following Eq. (11) we must sum over1 Other effects such as spin-orbit coupling has been considered (see [23]), where the

spin-orbit coupling can be tuned by electric fields.
2 The factor δ(1 − )n,0 is introduced to discriminate the ground state which con-

tributes only in the A sublattice for the K valley. If we had considered the K′ valley, the
contribution is on the Bsublattice.

3 In order to apply Eq. (10), the self-energy is considered diagonal in the spectral
representation.
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