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A B S T R A C T

Ultracold atoms have been used to create novel correlated quantum phases allowing to address many solid-state
physics problems using the quasi-particle concept, which is the foundation of our understanding of many-body
quantum systems. For bosons, the simplest kinds of excited states involve two particles and they are connected
to the dynamic structure factor S ωk( , ), measured using Bragg spectroscopy, similarly to the angle-resolved
photoemission spectroscopy (ARPES) in solid state physics – a major tool in the study of high-Tc cuprates.
Calculation of S ωk( , ) requires a significant numerical effort to determine multidimensional convolutions of
momentum and frequency dependent constituents functions, which we achieve using parallelized fast Fourier
transform. As a result, we are able to show that spectral weight transfer between low and high energies is an
intrinsic property of the strongly correlated Bose system in close analogy to the doped Mott-Hubbard electronic
insulator. Furthermore, the appearance of sharp coherence peaks in the superfluid phase of the cold bosons
closely resembles the formation of sharply defined quasiparticle excitations below Tc in cuprates suggesting an
intimate connection between the intrinsic nature of these seemingly different systems.

1. Introduction

Atomic gases trapped in optical lattice have become a powerful tool
in the investigation of solid-state physics phenomena [1], behaving in
many ways like strongly correlated electronic systems, e.g. super-
conductors. They allow accurate control over parameters of the system:
tunnelling and interactions between atoms can be precisely tuned,
while the geometry of the lattice can be modified in wide range. As a
result, they constitute a clean environment for observation of many-
body quantum effects not disturbed by lattice defects, or material
imperfections: a key phenomenon in these systems being a quantum
phase transition between phase coherent superfluid state and strongly
localized Mott insulator, which is tuned by strength of interactions
between atoms [2]. Similarly to their solid-state counterparts, ultracold
gases require new experimental tools to characterize their quantum
many-body states. Dynamics of atoms can be easily investigated using
time-of-flight experiments, in which all trapping potentials are sud-
denly switched off allowing the atomic clouds to expand in gravitational
field. Since it also turns off interactions between particles, the
distribution of momenta becomes temporarily frozen and can be
imaged by measuring spatial absorption of the expanded cloud. On
the other hand, the excitation spectrum of the atomic gases confined to
optical lattices can be measured using methods based on response to

scattering of photons from the correlated atomic state, which have been
implemented recently in the form of: radio-frequency spectroscopy
[3,4], Raman spectroscopy [5] and Bragg spectroscopy [6–9]. They
reveal the band structure of these systems, which can facilitate the
comparison of quantum gas phases with their condensed-matter
equivalents.

From the theoretical point of view, description of strongly inter-
acting ultra-cold atoms in optical lattice is challenging. Lack of a
dominant energy scale (both tunnelling and interaction energies are
comparable) hampers perturbational approaches. As the central phe-
nomenon is the quantum phase transition between phase-coherent and
localized states, knowledge of the low-energy excited states of many-
body systems is crucial. The simplest kinds of low-energy excited states
for bosons involve two particles and are connected to the dynamical
structure factor S ωk( , ). Since this quantity is both momentum and
frequency dependent, it requires a theoretical description that properly
includes spatial and thermal fluctuations. To this end, we use a
combination of the quantum rotor approach and Bogoliubov theory
to decouple problem of strongly correlated particles into formation of
the superfluid amplitude and long-range phase coherence. The quan-
tum rotor approach has been successfully applied for quantum phase
transitions [10], phase transitions in spin glasses [11], superconduct-
ing and magnetic systems [12–14], and Josephson junction arrays
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[15]. It has been also used for systems of ultracold atoms in optical
lattices and compared with quantum Monte Carlo calculations [16] or
experimental results, e.g., on time-of-flight patterns [17,18] (quantum
rotor approach supplemented by Bogoliubov theory). The key point of
this approach is a representation of strongly interacting bosons as
particles with attached “flux tubes” rendering boson a composite
object. This introduces a conjugate U(1) phase variable which acquires
dynamic significance from the boson-boson interaction. This phase
variable is perfectly suited to the problem since it takes a definite value
in ordered superfluid state. It is in contrast to the particle number
representation, since the number of bosons in the superfluid phase is
not a well-defined quantity. As a matter of fact, the phase and particle
number variables are conjugates in quantum mechanics and in this
context phase degrees of freedom represent good quantum number for
the problem under study.

This allows us to determine the analytical expressions for the
structure factor. Although they can be obtained in a closed form, their
analysis requires a significant numerical effort due to convolved nature
of the problem, which we solve using parallel fast Fourier transform.
The remainder of the paper is as follows: in the following section we
provide a theoretical background and brief presentation of the theore-
tical approach. In Section 3 we describe the numerical computations
and present the results. Finally, we summarize in Section 4.

2. Theoretical background

Bosons in optical lattices usually display short-range interactions,
and as a result they constitute a many-body system that is described by
Bose-Hubbard model [19]. When the occupancy in higher bands can be
neglected it is given by
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where ar
† is the boson creation (ar - destruction) operator at a site
Nr = 1,…, of a two-dimensional square lattice. The particle number

operator is denoted by nr, while the chemical potential μ controls the
total number of atoms in the lattice. Furthermore, t is the hopping
element and U the on-site interaction. Both t and U are related to the
optical lattice depth parameter, which can be tuned by the laser
intensity. At zero temperature T and for small t U/ , the system remains
in the Mott insulator incoherent phase, while as t U/ is raised phase
transition to a superfluid state sets in with long range phase coherence
[20].

As in solid state physics, one needs to characterize the quantum
many-body states in ultracold gases. To identify these, we concentrate
on the dynamic structure factor [21], which is defined as real-time
boson density-density correlation function [22]:
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where the angular brackets denote the ensemble average. For k=0, we
have n n= ∑k r r and S ωk( ) has a trivial contribution at ω=0, which we
dismiss by considering n t n t n t( ) = ( ) − ( )∼

r r r . In experiments it de-
scribes the response of the system to Bragg spectroscopy [6–9] in the
linear regime whenever the energy ω of the Bragg perturbation matches
the energy difference between two eigenstates of the Hamiltonian. The
function S ωk( , ) encapsulates relevant information about correlations
and obeys particle conservation as well as sum rules. As we shall see, it
plays an important role as it accounts for the spectral-weight transfer
between low and high energies, which in solid state physics is an
intrinsic property of a doped Mott-Hubbard insulator, when strong
local correlations are considered [23]. In the context of bosons, it was
analyzed mainly for low-dimensional systems, e.g. 1D [24–28]. In this
work, we compute the dynamic structure factor of two-dimensional
bosonic lattice systems in the regime of strong correlations. We

implement the quantum rotor mapping of the Bose-Hubbard model
[16] combined with the fast Fourier transform to track changes of
S ωq( , ) in the momentum-energy space and identify signatures of the
different quantum phases. The structure factor can be conveniently
obtained using Matsubara technique [29] from the “imaginary-time”
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Employing the fluctuation-dissipation theorem one obtains continua-
tion to real frequencies
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Here, ω πm β= 2 /m is the Matsubara frequency (m = 0, ± 1, ± 2, …). To
proceed, we decompose the physical boson annihilation operator as

a τ e b τ( ) = ( ),iϕ τ
r r
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where ϕ τ( )r is a fluctuating quantum rotor phase field, dual to the local
bosonic density. By the above decoupling, the original Hubbard model
(1) is mapped onto a free boson Hamiltonian self-consistently coupled
to a unitary group U(1) quantum phase rotor model [30]. The key
advantage of the quantum rotor representation is that the on-site
interaction in the Hamiltonian (1) has been replaced in the Lagrangian

of the model ∫L dτ= ( + ′)
β

0 0 by a simple kinetic term 0 for the
phase field,
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where ϕ ϕ˙ = ∂τ and μ μ U= + /2, while
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Furthermore, we use the mean-field type decomposition of the hopping
term, which couples the auxiliary complex bosons (X b≡ ) and rotor
(Y e≡ iϕ) fields according to XY X Y X Y→ 〈 〉 + 〈 〉. This reduces the
Hamiltonian (1) to two uncoupled Hamiltonians for transformed
bosons and U(1) rotors [31], while preserving spatial correlations in
the Lagrangian (7).

The Lagrangian (6), (7) allows for two possible orderings: a
disordered state without long-range phase coherence, and a long-range
phase-coherent state given by the order parameter Ψ a τ b ψ≡ ( ) =r 0 0,
where

ψ e= ,iϕ τ
0

( )r (8)

designates the phase coherence and b b τ≡ ( )r0 is the Bogoliubov
amplitude, which is non-vanishing in the strong-coupling limit.

Within quantum rotor formulation, according to Eq. (5) we write
the a-boson Green function as a product of b-auxiliary boson and phase
Green functions [32], namely
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with
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and b τ b b τ′ ( ) = − ( )r r0 . The Green function for the rotor field
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defines the phase coherence order parameter (8) according to:

∑ψ
Nβ

G ωk1 − = 1 ( , ).
m

ϕ m
k

0
2

, ≠0 (12)

Given the auxiliary boson and phase correlation functions, we can
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