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A B S T R A C T

In a gas of N interacting bosons, the Hamiltonian Hc, obtained by dropping all the interaction terms between
free bosons with moment k 0≠ , is diagonalized exactly. The resulting eigenstates S ηk| , , 〉 depend on two
discrete indices S η, = 0, 1, …, where η numerates the quasiphonons carrying a moment k, responsible for
transport or dissipation processes. S, in turn, numerates a ladder of ‘vacuaʼ S k| , , 0〉, with increasing
equispaced energies, formed by boson pairs with opposite moment. Passing from one vacuum to another
(S S→ ± 1), results from creation/annihilation of new momentless collective excitations, that we call
pseudobosons. Exact quasiphonons originate from one of the vacua by ‘creating’ an asymmetry in the number
of opposite moment bosons. The well known Bogoliubov collective excitations (CEs) are shown to coincide with
the exact eigenstates ηk|0, , 〉, i.e. with the quasiphonons (QPs) created from the lowest-level vacuum (S=0). All
this is discussed, in view of existing or future experimental observations of the pseudobosons (PBs), a sort of
bosonic Cooper pairs, which are the main factor of novelty beyond Bogoliubov theory.

1. Introduction

In his approach to the weakly interacting bosons gas [1,2],
Bogoliubov's first step was eliminating from the N-bosons
Hamiltonian:
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all the interaction terms that couple bosons in the excited states. This is
a first-order approximation in the ratio N N/out in, between the number of
particles outside and inside the free particle ground state, which yields
the truncated canonic Hamiltonian:
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in the thermodynamic limit (TL). The operators bk
† and bk create/

destroy a spinless boson in the free-particle state e Vr k〈 | 〉 = /ik r and

∫u q
V

e u rr( ) = 1 d ( ),iq r−

is the Fourier transform of the repulsive interaction energy u(r) ( > 0).
The number operator N b b=͠

in 0 0
† refers to the bosons in the free particle

ground state. Overtilded symbols indicate operators to avoid confusion
with their (non-overtilded) eigenvalues.

Bogoliubov's next step is reducing Hc to a bi-linear form, which is
realized in the TL, by assuming N N N N| ± 2, 〉 ≈ | , 〉in out in out for the
bosonic Fock states [3], which yields the approximated Hamiltonian:

∑ ∑H E k Nu k
k

β β N u k β β β β= + [ ( ) + ( )]
ϵ ( )

+
2

( )[ + ],BCA in
k

k k
k

k k k k
≠0

1
†

≠0

†
−
†

−

(3a)

where new creation/annihilation operators are introduced:

β b N b β b N b= ( + 1) , = ( + 1) ,͠ ͠
in ink 0 k k k 0
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(3b)

ensuring the conservation of the number N of real bosons. Note that βk
and βk

† satisfy the bosonic commutation rules exactly [4,5]. This is
what we call the Bogoliubov Canonic Approximation (BCA). Since
HBCA is a bi-linear form in bosonic creation/annihilation operators, it
is possible to eliminate the interactions by a suitable Bogoliubov
transformation:
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which leads to a free gas of new ‘particles’, which is customary to call
collective excitations (CEs), or ‘quasiparticles’. In the present work, the
terms ‘quasiphonon’ (QP) and ‘pseudoboson’ (PB) will be used to
distinguish, respectively, between a CE displaying a genuine particle
nature, from one that does not, as will be seen in what follows.

In Ref. [3], since now on referred to as (I), the present author has
diagonalized the Hamiltonian (2) exactly, in the special subspace
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spanned by the states j k| , 0 with the same number j of bosons in k| 〉 and
k| − 〉 and N j− 2 bosons in 0| 〉:
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(|∅〉 being the real bosons’ vacuum). The resulting eigenvalues E k( , 0)S
(see, in particular, [6]) turn out to be twice as large as the BCA
energies k( , 0)S reported in the current literature [7]:
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kϵ ( )1 being defined in Eq. (3a). The exact eigenstates of Hc

calculated in (I) are, in turn, quite different from the BCA
eigenstates: the latter have total moment S k, corresponding to a
number S of QPs, while the formers have zero total moment, for any
S. In this case, the eigenstate is formed by a ‘sea’ of opposite
moment pairs, and S numerates what we call the ‘pseudobosons’
(PBs) carried by the eigenstate. Hence a PB corresponds to the
creation of a momentless quantum k2ϵ( ) of energy, which cannot be
considered a particle in its full sense, but, rather, a sort of bosonic
Cooper pair. The next question is, thereby, which exact QPs do
follow from the diagonalization of Hc. This question was left to
future investigations in (I), where the diagonalization of Hc was
limited to the subspace spanned by the momentless states equation
(5). In the present work the diagonalization of Hc is extended to the
subspaces containing a different number of bosons with opposite
moment:
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with j η+ bosons in k| 〉, j bosons in k| − 〉 and N j η− 2 − bosons in
0| 〉, so that the total moment is, manifestly, η k. From a formal
viewpoint, this is the main factor of novelty, with respect to (I)
(Section 2). However, the results obtained open the way to other
new items and perspectives. In particular, in Section 3 it is shown
that the creation/annihilation of a QP (η η→ ± 1) corresponds to
enhance/reduce the asymmetry between opposite moment popula-
tions. Creating/annihilating a PB (S S→ ± 1), instead, corresponds
to the passage between different ‘vacua’ of QPs, which are the states
with symmetric populations studied in (I). Furthermore,
Bogoliubov theory turns out to be a special case of the general
exact solution developed in Section 2, in which the symmetry
breaking occurs on the zero-PBs state (S=0). Finally, possible
effects revealing the existence of the PBs are outlined in Section
4, with some insight about their experimental observation.

2. Complete diagonalization of Hc

Before entering the main subject, it should be recalled that in the
present work the results are ‘exact’ with respect to Bogoliubov's
approximations BCA, not with respect to the truncation of
Hamiltonian (1), leading to Hc (Eq. (2)).

Hamiltonian Hc can be written as a sum of independent one-
moment Hamiltonians
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Hence the whole problem can be reduced to the study of the exact
eigenstates of h k( )c ,1 by solving the eigenvalue equation

h S η k η S ηk k| , , 〉 = ( , )| , , 〉,c S (9)

with exact QPs expressed as linear combinations of the states equation
(7). Thanks to a suitable transformation [8], Eq. (9) can be reduced to
the same problem already solved analytically in (I). This makes it
possible to write the eigenstates of hc (Eq. (8b)) as:
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with boundary conditions ϕ j klim ( , ) = 0j S η→∞ , (necessary for normal-
izability) and ϕ k( − 1, ) = 0S η, (exclusion of negative populations). It

should be noticed that ϕ j k j x k( , ) ∝ ( )S η
S η j

,

2
2 + 2 for j ≫ 1, i.e. the pre-

exponential factor in the probability amplitude on the Fock states
j k| , η (Eq. (7)) tends to a polynomial of degree S η2 + in j ≫ 1. The
quantity x(k), the coefficients C m k( , )S η, and the eigenvalue k η( , )S are
determined by a system of S + 2 equations (see Ref. [8]), and by
normalization. The resulting expressions for x(k) (fixing the exponen-
tial decay in j) and the eigenvalue k η( , )S read:
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Notice that x(k) is negative and smaller than 1 in modulus, which
ensures normalizability. Since h hk k( ) = ( − )c c (Eq. (8b)), k η( , )S must
be counted twice in the sum equation (8a).2 Hence the energy
eigenvalues of H E−c in are:
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For the calculations in what follows, it is useful to recall that the
coefficients w k( )± in the Bogoliubov transformation equation (4) can be
expressed in terms of x k( ) (Eq. (11a)) as follows:
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The limit of large k ξ Mu N≫ ≡ 2 (0) /−1 that marks the passage from
collective to single-particle dynamics, yields k kϵ ( ) → ( )1 and

k kϵ( ) − ϵ ( ) → 01 . Hence, from Eq. (12), one has:

E k η S η k k ξ( , ) → (2 + ) ( ) ( ≫ ).S
−1 (14)

Since the CEs (QPs and PBs) become non-interacting real bosons when
their kinetic energy k k M( ) = /(2 )2 2 largely exceeds the interaction
energy, the number S η2 + corresponds to the total number of real
bosons excited in the limit k ξ≫ −1. This agrees with physical intuition:
each PB corresponds to the creation of a sort of bosonic Cooper pair, i.e.
two bosons in k| ± 〉, with opposite momenta and identical kinetic energy;
each QP corresponds to the additional activation of a single boson in k| 〉.

3. Discussion and comparison with Bogoliubov theory

Unlike some thermodynamic results [9], the differences between
Bogoliubov's dynamics and exact dynamics do not vanish in the TL. In

1 In (I) those exact QPs have been improperly denoted as ‘η-pseudobosons’.
2 Ignoring the double counting was the error in the original version of Ref. [3],

emended in [6].
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