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A B S T R A C T

Evolution of vibration relaxation of hydrogen atoms in metals with the close-packed lattice at high and medium
temperatures is investigated based on non-equilibrium statistical thermodynamics, in that number on using the
retarded two-time Green function method. In accordance with main kinetic equation – the generalized Fokker-
Plank- Kolmogorov equation, anharmonism of hydrogen atoms vibration in potential wells does not make any
contribution to collision effects. It influences the relaxation processes at the expense of interference of fourth
order anharmonism with single-phonon scattering on impurity hydrogen atoms. Therefore, the total relaxation
time of vibration energy of system metal-hydrogen is written as a product of two factors: relaxation time of
system in harmonic approximation and dimensionless anharmonic attenuation of quantum hydrogen state.

1. Introduction. Harmonic approximation

The mechanism of the elementary act of the hydrogen atom (H
atom) diffusion in metals is determined by the configuration potential
relief of the impurity center, which has a significant impact on both its
diffusion mobility and quantum state. In [1–3] was shown that the
main contribution to the potential relief of the H atom is made by the
Coulomb interaction between the metal ions and the impurity center on
a homogeneous background of free electrons. Upon that, an amend-
ment describing the contribution of the electron gas polarization by a
charged impurity atom is taken into account.

We confine ourselves to the movement of the H atom in metals with
close-packed lattice. Recall that these lattices are formed from the same
close-packed layers of atoms but with different means of their
arrangement. However, we are further going to refer to the hexagonal
close-packed (HCP) lattice more often since the octahedral positions in
its structure are aligned along the hexagonal axis and form a periodic
sequence of symmetrical wells having the potential minima near the
octahedral positions. It is assumed that the barrier height is much
greater than the average thermal energy of the H atoms. In case of HCP
metals main contribution to the potential relief inserts contributes of
metal atoms on the background free electrons, while the interaction
with local strain field in a first approximation does not considered.

In this article we studied the influence of anharmonic effects on
diffusion mobility of light atoms in metals with HCP lattice. Mostly in
the scientific literature, the object of study is the action of anharmo-
nicity on the lattice dynamics - the phonon dispersion throughout the
Brillouin zone, the frequency shift and the damping of phonons [4]. In

the present article, we propose a different direction of research – the
anharmonic potential impact on the relaxation kinetics of non-equili-
brium process.

Using a system of units in which (h/2π)=kB=1, the total
Hamiltonian in the harmonic approximation can be written as

H H H H= + + ,ph p
h
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is
the hamiltonian of the H atom in the harmonic approximation; Hint is
the interaction hamiltonian the H atom with thermal lattice vibra-
tions;; ωs=Ωs is energy of the H atom, that is the harmonic oscillator,

oscillating in the x-direction, with the natural frequency Ω; as
+

and as
are the Fermi operators. In the nearest neighbors approximation, it can
be written as

∑H λ h X u X d= ( ) ( + ),∼
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where λ∼ is the bond constant of a particle with lattice vibrations; u is
displacement of the lattice atom with respect to the lattice nodal point;
h (X) is displacement of the H atom with respect to the minimum of the
potential well with the coordinate X (chaotic variable); d - the distance
between neighbor octahedral sites of the x –chain. In the second-
quantization representation we have

∑H ε s s i q k X a a b b= ( , + 1)exp[− ( − ) ] ( + ),
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where
ε s s I s I iλ N Mω mΩ( , + 1) = ( + 1) , = − ( )∼ ͠q q q q

1/2 −1/2, M is the mass of the
lattice atom, m is the mass of the H atom, N͠ is the number of atoms in
the x-chain.

In order to describe the system in the framework of non-equili-
brium statistical theory we must enter the statistical operator ρl (t). If
the thermodynamic parameters of the system change slowly, we can be
restricted to using by the stationary statistical operator ρl. Introduction
to statistical operator allows us to define the two-time retarded Green's
function, which is an amendment to the equilibrium distribution of the

H atoms n a a= 〈 〉.s s s
+

and is written in the following form [5]
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where А is the external driving force, P Sp ρ P= ( )l is the average value;
B A BA AB[ , ] = − .

In the harmonic approximation the Green's function (4) satisfies
the equation, which is shaped similar to the finite-difference equation
of the Fokker-Planck-Kolmogorov equation for the probability density
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The analytical solution of the Eq. (5) implies that the Fourier
component of the Green's function in the harmonic approximation has
the form
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is the reciprocal relaxation time in the harmonic ap-
proximation; F s s(− ″, 1; )11 is the confluent hypergeometric function;

β
1

is the lattice temperature. The explicit form of the function Bs″
calculated with consideration of the Eq. (8) is given in [5].

2. The equation of motion for the Green's function. The
vibrational energy relaxation in the system of anharmonic
oscillators

The theory presented above is formulated in the harmonic approx-
imation. As will be shown below (see part 5), the using harmonic
potential, we actually exclude from consideration the area in which the
fluctuation fields acting on the migrating particles are located. This
raises concerns that the resulting picture is thus not fully in line with
the physical situation. Therefore, it is of interest to approach the
problem in a more realistic model including anharmonic potential in
the initial definitions.

As a model potential we shall use the standard potential of impurity
particles in a crystalline solid [6]
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Restricting in the terms of the fourth order of the displacements of
the impurity atom, we can write the total Hamiltonian of the system as
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In the formula (11) indexes η, ν, ρ, σ; l, m, f, g are discrete variables
that takes two values of 1 and −1; Λ η ν ρ σ= + + + . The summation
with respect to η, ν, ρ, σ in (11) and in all subsequent equations is
performed for Λ‡0. In addition in the formula (11) k is reciprocal lattice
vector and the dimensionless (formal) parameter λ, which indicates the
order anharmonism contribution in the final expression is superseded
with 1. The length in the theory of harmonic oscillators is written in
terms of setting x mΩ= ( ) ,0

−1/2 the fourth-order relation can be
represented as
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where l δx l η+ is the matrix element of the H atom displacement,
d=c1×0, and с1 is a numerical coefficient.

Now we are writing the equation of motion for the Green's function
(4) taking into account the combined effects on migrating particle
inelastic phonon scattering (3) and anharmonic potential (11).
Complete calculation of the equation of motion is presented in the
Appendix A. Substituting equation (A2)–(A4) in the original equation
(A1), we obtain the desired equation. Since the resulting equation is
obtained rather cumbersome, we confine ourselves to writing the
equation only for the amendment to the Green function on the effect
of anharmonicity δG t G t G t( ) = ( ) − ( )ss ss ss

h
′ ′ ′

( ) .
After the transition to the Fourier components of the Green

functions we obtain the equation of motion describing at the same
time both dynamic effects of H atom collisions of the and anharmonic
effects that are realized in condition of H atom vibrations in the wells of
configuration potential. We obtain
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In the above equation δΛ Λ, ′ is the Kronecker delta function.

3. The two-level (two-zone) model of the upper states and
attenuation of the quantum state under the influence of
anharmonism

We shall use the potential of double-cell well with a barrier V0 that
separates the left and right octahedral positions (p and p′ in Fig. 1) as
the simple configuration of the relief of the impurity atom. For
maximum simplification of the problem is convenient to use a two-
level model for the upper states of migrating atom which includes only
the level of the potential barrier s0 and the lower over-barrier s0 +1
level.

It is assumed that the subsystem, including the two upper levels,
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