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A B S T R A C T

The linear and nonlinear optical response in a cylindrical quantum dot (CQD) of GaAs Ga Al As/ 0.6 0.4 with a donor
impurity in a uniform magnetic field applied in the axial direction of the cylinder is studied theoretically. The
calculations were carried out in approximations of effective mass and two-level quantum systems. Using the
variational method, the binding energies and the wave functions of the 1s-like y 2pz-like states for different
positions of the impurity inside the CQD were found. It was found that the binding energy is greatest in the
center of the CQD and diminishes as the impurity moves radially and/or axially. The optical rectification, the
change in the refractive index, and the optical absorption were studied as functions of the energy of a photon
incident on the CQD and different intensities of the magnetic field, with an impurity located at various positions.
It was found that in a CDQ with an impurity inside, the effect of the variation of the intensity of the magnetic
field on the optical response is much less than the effect produced by the variation of the position of the
impurity. The physical reason for this behavior is that in nanostructures with impurities the Coulomb
confinement is stronger than the magnetic confinement. It was also found that when the impurity is in the
center of the quantum dot, the optical rectification coefficient is zero, due to the symmetry that the wave
function of the impurity exhibits at this geometric point. When the impurity moves in the axial direction, the
symmetry is broken and the optical rectification coefficient is different from zero, and its value increases as the
impurity moves away from the center of the CQD.

1. Introduction

Recent advances in the nanotechnology of semiconductors have
allowed designing and producing a great variety of low-dimensional
quantum systems, such as quantum wells, quantum wires, and
quantum dots (QDs) [1], which have contributed to the evolution of
nanoelectronics and the development of technologies such as laser
production, sources of photon emission, quantum clocks, and some
technologies applicable to quantum information, quantum computing,
etc. [2,3]. Nevertheless, QDs are the most-explored nanostructures,
because the tridimensional confinement of the charge carriers leads to
the formation of energy spectra similar to those that are exhibited in
atomic systems. These discrete levels of energy can be adjusted by
means of the control of the size of the QDs and/or the action of external
agents such as temperature, hydrostatic pressure, electrical fields, and
magnetic fields, etc. [4]. Theoretical and experimental research can be
found in the literature that studies the optical properties of QDs with
varying geometry and dimensions for application in non-linear optical

devices. Some research uses cylindrical quantum dots to study non-
linear optical phenomena such as optical rectification [5], generation of
the second harmonic [6], generation of the third harmonic [7], and
changes in the index of refraction and the optical absorption [8].

On the other hand, when impurity atoms are added to nanostruc-
tures, the number of charge carriers in the nanostructure changes,
producing changes in the optical and electronic properties of these low-
dimensional systems. For this reason, the properties of the impurities
in nanostructures are an object of study by diverse authors. Ribeiro
and Latgé [9] carried out a comparative study of impurities in QDs and
investigated the binding energy and the density of states of a donor
impurity within a cylindrical QD and a spherical QD, finding that for
volumes equal to the binding energy and the form of the density of
states they don't depend on the geometry of the nanostructured
quantum system. The effect of a magnetic field on the binding energy
of donor impurities in quantum wires [10–12] and in QDs [13–15] has
also been reported. These investigations show that only for the 1s-like
state does the binding energy increase approximately linearly with the
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applied magnetic field. With respect to the nonlinear optical response
in nanostructures, the effect that impurities have on optical rectifica-
tion [16], the change in the refractive index [17], the optical absorption
[18], and the generation of harmonics [19,20] have been investigated,
and it has been concluded that the presence of impurities in quantum
systems: i) increases the difference in energy between the subbands,
and therefore the resonance peaks undergo a blue shift; ii) reduces the
transition matrix elements, causing a decrease in the magnitude of the
optical properties.

In the present article, a theoretical study of the linear and nonlinear
optical response generated by the interaction between a classical
optical field and a CQD of GaAs Ga Al As/ 0.6 0.4 with a donor impurity
subjected to the action of a uniform magnetic field applied in the axial
direction of the cylinder is presented. Furthermore, the effect of the
magnetic field and the position of the impurity within the CQD on the
binding energy, the optical rectification, the change in the refractive
index, and the optical absorption is analyzed.

This article is organized in the following way: in Section 2 the
theory used for finding the above-described magnitudes is presented.
In Section 3, the analytical and numerical results and their analysis are
presented, and in Section 4 we present our conclusions.

2. Theoretical background

2.1. Characteristic values of the energy and of the characteristic
functions of the system

The system under study consists of a donor impurity confined in a
CQD in the presence of a uniform magnetic field B oriented in the axial
direction of the CQD. Within the framework of the effective mass
approximation, the Hamiltonian Ĥ0 of the impurity is [11,21]:
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R and L are the radius and the length of the cylinder, respectively.
Using cylindrical coordinates and reduced atomic units, the follow-
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Eqs. (5.1) and (5.2) represent the Schrödinger equations indepen-
dent of time in the radial and axial directions from the quantum dot.
γ= e B

m cR
ℏ

2 * * is an adimensional measure of the magnetic field. The solution
of (5.1) is known [11,22], and is given by:
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m is the magnetic

quantum number, and N1 is the normalization constant. F a b x1 1( , , )
and U a b x1 1( , , ) are confluent hypergeometric functions. Applying
boundary conditions to the wave functions described in (6), one obtains
the transcendental equation that determines the values of the energy E1

for each m. The solution for (5.2) is also known [23], and for the ground
state it has the following expression:
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k E k V z E= , = ( ) −z1 2 2 2. . The value of the energy E2 is determined by
solving Eq. (8).
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In order to calculate the impurity energy in the CQD for the s1 -like
and Pz2 -like states, the variational method is used [24], taking the
following test functions:
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where m=0 for ψ ρ ϕ( , )1 and N s1 and N Pz2 are constants of normalization.
The functions r λΓ ( , )s s1 1 and r λΓ ( , )Pz Pz2 2 are hydrogenic orbitals for the
s1 -like and Pz2 -like states, respectively, detailed in Ref. [25]. λ s1 and λ Pz2
are variational parameters that are obtained by minimizing the
expected value of the Hamiltonian described in (5), and correspond
to the impurity energy, that is:
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where Eimp
x is the impurity energy in the CQD for state x.

The binding energy Eb x, of a hydrogenic impurity is the energy
necessary to move its electron from state x of the impurity to the first
level of the conduction subband. The calculation of the binding energy
is carried out by means of the application of (12) [11]:

E E E= − ,b x imp
x

, 0 (12)

where E E E= +0 1 2 corresponds to the energy of the first level of the
conduction subband of the quantum dot CQD of GaAs Ga Al As/ x x1− with
a uniform magnetic field applied in the axial direction of the cylinder.

2.2. Linear and nonlinear optical response

In this section, a brief derivation of the optical response that a
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