Author's Accepted Manuscript

Temperature and composition dependent density of states extracted using overlapping large polaron tunnelling model in $Mn_xCo_{1-x}Fe_2O_4$ (x = 0.25, 0.5, 0.75) nanoparticles

Arifa Jamil, M.F. Afsar, F. Sher, M.A. Rafiq

www.elsevier.com/locate/physb

PII: S0921-4526(17)30005-4

DOI: http://dx.doi.org/10.1016/j.physb.2017.01.005

Reference: PHYSB309781

To appear in: Physica B: Physics of Condensed Matter

Received date: 13 December 2016 Revised date: 3 January 2017 Accepted date: 4 January 2017

Cite this article as: Arifa Jamil, M.F. Afsar, F. Sher and M.A. Rafiq, Temperature and composition dependent density of states extracted using overlapping large polaron tunnelling model in $Mn_xCo_{1-x}Fe_2O_4$ (x = 0.25, 0.5 0.75) nanoparticles, *Physica B: Physics of Condensed Matter* http://dx.doi.org/10.1016/j.physb.2017.01.005

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

Temperature and composition dependent density of states extracted using overlapping large polaron tunnelling model in $Mn_xCo_{1-x}Fe_2O_4$ (x = 0.25, 0.5, 0.75) nanoparticles

Arifa Jamil^a, M. F. Afsar^a, F. Sher^b and M. A. Rafiq^{a,*}

^a Micro and Nano Devices Group, Department of Metallurgy and Materials Engineering,

Pakistan Institute of Engineering and Applied Sciences, PO Nilore, Islamabad, 45650, Pakistan.

^b Department of Chemistry, SSE, Lahore University of Management Sciences, Lahore 54000,

Pakistan

*Corresponding author. Tel.: +92-51-111174327 Ext. 3247 Fax: +92-51-9248600.

aftab@cantab.net

Abstract

We report detailed ac electrical and structural characterization of manganese cobalt ferrite nanoparticles, prepared by coprecipitation technique. X-ray diffraction (XRD) confirmed single-phase cubic spinel structure of the nanoparticles. Tetrahedral (A) and octahedral (B) group complexes were present in the spinel lattice as determined by Fourier Transform Infrared Spectroscopy (FTIR). Scanning Electron Microscope (SEM) images revealed presence of spherical shape nanoparticles having an average diameter ~ 50 nm - 80 nm. Composition, temperature and frequency dependent ac electrical study of prepared nanoparticles interpreted the role of cationic distribution between A and B sites. Overlapping large polaron tunnelling

Download English Version:

https://daneshyari.com/en/article/5492146

Download Persian Version:

https://daneshyari.com/article/5492146

<u>Daneshyari.com</u>