
Contents lists available at ScienceDirect

Physica B

journal homepage: www.elsevier.com/locate/physb

Andreev reflection properties in a parallel mesoscopic circuit with Majorana
bound states

Jin-Tao Mua, Yu Hana, Wei-Jiang Gongb,⁎

a Physics Department, Liaoning University, Shenyang 110036, China
b College of Sciences, Northeastern University, Shenyang 110819, China

A R T I C L E I N F O

Keywords:
Andreev reflection
Majorana bound state
Quantum dot
Magnetic flux

A B S T R A C T

We investigate the Andreev reflection in a parallel mesoscopic circuit with Majorana bound states (MBSs). It is
found that in such a structure, the Andreev current can be manipulated in a highly efficient way, by the
adjustment of bias voltage, dot levels, inter-MBS coupling, and the applied magnetic flux. Besides, the dot-MBS
coupling manner is an important factor to modulate the Andreev current, because it influences the period of the
conductance oscillation. By discussing the underlying quantum interference mechanism, the Andreev-reflection
property is explained in detail. We believe that all the results can assist to understand the nontrivial role of the
MBSs in driving the Andreev reflection.

1. Introduction

Heterostructures with quantum dots (QDs) coupled to supercon-
ducting and normal leads are the well-known systems to study the
interplay between the superconducting correlations and mesoscopic
electronic transport [1–10]. In the structure of one normal metallic
lead coupled to the superconductor via QDs, the Andreev reflection has
an opportunity to take place. In such a process, an incident electron
from a normal metal can be converted into a Cooper pair in the
superconductor when its energy is less than the superconductor energy
gap Δ, and thus a hole with opposite spin and velocity reflects back.
Also, in multi-terminal systems, the two electrons in a Cooper pair
from the same lead or different leads are distinguished as the normal
and crossed Andreev reflection ones [11,12]. During the past years,
there is a growing attention in studying the transport properties of the
superconductor coupled mesoscopic hybrid systems for both the
fundamental interest and potential applications in nanoelectronics.
The transport properties in various configurations of metal-QD-super-
conductor have been investigated [13–16].

In recent years, topological superconductor (TS) has become one
important concern in the field of mesoscopic physics due to the
presence of Majorana mode at its boundary [17–21]. It is known that
Majorana bound states (MBSs) have been realized at the ends of a one
dimensional p-wave superconductor for which the proposed system is a
semiconductor nanowire with Rashba spin–orbit interaction to which
both a magnetic field and proximity-induced s-wave pairing are added
[21]. Following the fabrication of the MBSs in solid states, the MBS-

assisted transport properties in the mesoscopic circuit have become
one of the hot topics in the field of mesoscopic physics. And some
interesting results have been reported. For instance, when a pair of
MBSs couple to the two leads of one circuit, the nonlocality of the MBSs
was observed due to the occurrence of the crossed Andreev reflection
[22]. In the junction between a normal metal and a chain of coupled
MBSs, the Andreev reflection shows odd-even effects, i.e., when the
MBS number is odd, the zero-bias conductance peak is of height e h2 /2 ,
whereas it is equal to zero otherwise [23]. Moreover, the coupling
between the MBSs and regular bound states has been found to bring
about new transport properties of a mesoscopic circuit [24]. When the
QD is noninteracting and in the resonant-tunneling regime, the MBS
influences the conductance through the QD by inducing the sharp
decrease of the conductance by a factor of 1

2
[25,26]. If the QD is in the

Kondo regime, the QD–MBS coupling reduces the unitary-limit value
of the linear conductance by exactly a factor 3

4
[27].

One of the transport characteristics of the mesoscopic circuit is its
dependence on the quantum interference effect which is related to the
circuit geometry. For a quantum ring, the current flow will show
oscillation behavior by changing the applied local magnetic flux. Such a
result is exactly the Aharonov–Bohm (AB) effect [28]. Consequently,
the AB effect drives various interesting transport results in the QD
structures, by cooperating with other system parameters, such as the
QD levels and intradot Coulomb interaction. Therefore, it can be
anticipated that when QDs couple with MBSs to form quantum ring,
the quantum transport result will be more complicated and interesting,
due to the coexistence of multiple transport behaviors governed by the
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quantum interference. In the present work we aim to investigate the
Andreev reflection in a parallel mesoscopic circuit with MBSs. After
calculation, we find that the current induced by the Andreev reflection
can be manipulated in a highly-efficient way, by adjusting the relevant
quantities, e.g., the bias voltage, QD levels, inter-MBS coupling, and the
applied magnetic flux. In addition, the coupling between the MBSs and
QDs makes an important contribution to modification of the Andreev
current. The obtained results can be helpful in understanding the
properties of the MBS-contributed Andreev reflection.

2. Model

The parallel mesoscopic circuit with coupled MBSs is illustrated in
Fig. 1. Thanks to the advance of the nanotechnology, this structure can
be fabricated in experiment. The QDs can be fabricated by applying
gate voltages on the two-dimensional electron gas [29,30]. Besides,
when a semiconductor nanowire with strong Rashba interaction is
subjected to a strong magnetic field B and adheres to a proximity-
induced s-wave superconductivity, a pair of MBSs can form at the ends
of the nanowire [26].

The Hamiltonian that describes the electron motion in the structure
of Fig. 1 can be written as

H H H H H= + + + .NM M D T (1)

The first term is the Hamiltonian for the normal metallic lead, which
takes the form as H ε c c= ∑NM k k k k

† . ck
† c( )k is an operator to create

(annihilate) an electron of the continuous state k| 〉 in the normal
metallic lead. εk is the corresponding single-particle energy. HM

represents the Hamiltonian for the MBSs

H i η η= ϵ .M M 1 2 (2)

This term in Eq. (2), the low-energy effective Hamiltonian for the
MBSs, describes the paired MBSs generated at the ends of the nanowire
and coupled to each other by an energy eϵ ∼M

l ξ− / , with l the wire length
and ξ the superconducting coherent length. In Ref. [22], the relation
between ϵM and l and ξ has been demonstrated, which is helpful for the
relevant experiment.

HD, the QD Hamiltonian, can be written as H ε d d= ∑D j j j j
† . dj

† (dj)
is the creation (annihilation) operator of electron in QD-j, and εj
denotes the electron level in the corresponding QD. Finally, HT

represents the coupling between the QDs and lead(MBSs), and it can
be expressed as

∑H t c d λ d λ d η h c= + ( − * ) + . ..T
k

j k j jl j jl j l
† †

(3)

λjl is the coupling coefficient between the QDs and MBSs. tj represents
the coupling between QD-j and the lead. In this work, we would like to
pay attention to two typical models, i.e., Model I where λ λ=11 1 and
λ λ=21 2 with λ λ= = 012 22 and Model II where λ λ=11 1 and λ λ=22 2 with
λ λ= = 021 12 , as shown in Fig. 1(a)–(b).

With the help of the nonequilibrium Green function technique, the
Andreev current in the normal metallic lead can be given by [31]

∫J e
h

dωT ω f ω eV f ω eV= ( )[ ( − ) − ( + )].eh (4)

f ω( ) is the Fermi distribution in the normal metallic lead.
T ω Γ ΓG G( ) = Tr[ ]eh E H

† is the Andreev reflection ability, where G is the
related Green function. ΓE H( ) are the coupling matrix between the
electron (hole) bound state and the lead, respectively. With the help of
equation of motion method, the matrix form of the Green function can
be obtained, i.e.,
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(5)

where g ω ω ε Γ( ) = [ − + ]je j
i

jj
e

2
−1, g ω ω ε Γ( ) = [ + + ]jh j

i
jj
h

2
−1, and

g ω ω i( ) = [ + 0 ]l
+ −1. Γe and Γh are the selfenergies induced by the

QD-lead coupling, where are given by Γ πt t ρ= 2 *jl
e

j l e and Γ πt t ρ= 2 *jl
h

j l h.
Within the wide-band limit approximation, ρe can be considered to be
identical with ρh, which will leads to the result of Γ Γ=jj

e
jj
h. In this work,

we are only interested in the case of symmetric QD-lead coupling, i.e.,
t t| | =j 0. Thus, the matrix forms of the ΓE and ΓH can be simplified as
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(6)

and
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(7)

with Γ πt ρ= 2 e h0 0
2

( ). In the above equations, ϕ is the magnetic phase
factor induced by the finite magnetic flux through the ring. It is known
that compared with the Andreev current, the Andreev conductance is
more suitable to describe the Andreev reflection properties. Thus, we
would like to investigate the Andreev conductance instead of the
Andreev current. In the limit of zero temperature, the conductance
expression can be written out, i.e.,

J
V

e
h

T ω eV= ∂
∂

= 2 ( = ).eh
2

(8)

With the help of Eq. (5), we can work out the Green function
responsible for the conductance, and then we can evaluate the
Andreev-reflection properties in this structure.

Fig. 1. Sketches of a parallel mesoscopic ring with coupled MBSs, in which one QD is
embedded in each arm. One local magnetic flux is introduced to adjust the quantum
interference. (a) Two QDs couple to one MBS. (b) Two QDs connect with two MBSs,
respectively.
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