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A B S T R A C T

The rate of loss of energy of the non-equilibrium electrons to the acoustic mode lattice vibration in a degenerate
semiconductor is obtained under the condition, when the lattice temperature is low enough, so that the
traditional approximations like the elastic nature of the electron-phonon collisions and the truncation of the
phonon distribution to the equipartition law are not valid any more. Using the results of the energy loss rate, the
non-ohmic mobility is then calculated. Evaluating the loss rate and the non-ohmic mobility in degenerate
samples of Si and Ge we find that significant changes in both the characteristics have been effected compared to
that in the non-degenerate samples, in the regime of lower energy and for relatively lower fields. The effected
changes are more significant the lower the lattice temperature is.

1. Introduction

The electrical transport characteristic of a material decides on its
suitability for a particular device. Under any prevalent conditions, the
characteristics are determined by the dominant interactions of the
electrons with the lattice imperfections. When the lattice temperature
TL is low (T ≤L 20 K), the free electrons in a high purity elemental
semiconductor interact dominantly only with intravalley acoustic
phonons. Under this Condition, the electrons may be Significantly
perturbed from the state of thermodynamic equilibrium even for a field
of only a few V/cm or even less [1,2]. The non-equilibrium electrons
then attain an effective temperature TL which exceeds the lattice
temperature and the material exhibits electrical non-linearity. The
electrons then emit more phonons per unit time, compared to how
much they absorb in the same interval. This leads to a finite rate of
phonon growth, which results in a finite energy loss rate (ELR) of the
ensemble of electrons.

In calculating the Phonon growth and the energy loss rate
characteristics under the condition when the non-equilibrium electrons
interact only with intravalley acoustic phonons, one traditionally
neglects the Phonon energy εph compared to the carrier energy
ε ,k

→ i.e. assumes the electron-phonon interactions to be elastic and
also approximates the phonon distribution by the equipartition law.
For this long wave length acoustic phonon, it may be seen that
εph/ε k

→≈ul/uT , where ul is the acoustic velocity and the uT is the average

thermal velocity of the carriers [1]. Hence, though the traditional
simplifications can be made at higher temperature the same simplifica-
tions can hardly be made if the temperature is low, where u ≈uT l . Hence
under the condition of low temperature, the electron- phonon interac-
tion can neither be assumed to be elastic, nor the phonon distribution
be truncated to the equipartition form. It has been shown in [3,4] how
do the approximations like the elastic interaction and the equipartition
law for the phonon distribution lead to significant errors in the phonon
growth and the energy loss characteristics in a non-degenerate (non-
deg) semiconductor at low lattice temperatures.

For the low lattice temperatures if the Fermi energy εF is not much
lower than the k TB L of the conduction band edge (kB being the
Boltzmann constant), and the electron densities are beyond the
insulator to metal transitions the free electrons ensemble in the
semiconductor should be treated as degenerate (deg). With the increase
of the doping level, as the electron concentration of an n-type material
exceeds the effective density of states the Fermi level εF then moves into
the conduction band and the material behaves as a degenerate one. The
critical concentration of the donors ND which is required for the
degeneracy, may be roughly estimated from

⎛
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where m* is the effective mass of an electron and Ed is the donor
ionisation energy [5–7]. It may be kept in mind, though with the
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increase doping the interaction with the impurity atoms may be
important, but such interaction being elastic, hardly takes part in the
energy balance equation.

The purpose of the present communication is to calculate the
energy loss rate characteristic, and then, from the loss-rate, to get the
non-ohmic mobility characteristics in a degenerate sample of semi-
conductor at the low temperatures. The calculations have been carries
out taking due account of the inelasticity of the electron-phonon
interaction and also the true phonon distribution, and not truncating
the same to the equipartition law. The numerical results which are
obtained from the present theory for some degenerate samples of Si
and Ge, are then compared with the results reported earlier for the
non- degenerate materials in the same framework satisfying the low
temperature conditions [3]. From the Comparison, the effects of
degeneracy on the ELR and non-ohmic mobility characteristics are
analyzed.

2. Development

The average rate of energy loss of a carrier due to interaction with
the intravalley acoustic phonons can be calculated from [1]

⎛
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where n is the concentration of the free carriers. V is the volume of the
semiconductor material, ћ= h

2π
, h being the Plank's Constant, q→ is the

phonon wave vector, Nq is the number of phonons with wave vector q→

and ( )∂N
∂t

q is the phonon growth rate. Now transforming the summation

over q→ to an integration over the spherical coordinates q,θ, φ and
integrating over, θ and φ one obtains
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where q0 is the upper limit of q. So, in order to carry out the integration
in (2), apart from assigning a proper value of q0, the expression for the
phonon growth rate should be obtained for a degenerate semiconduc-
tor under the identical conditions of low temperature of our interest,
where the effects of the inelasticity of the electron-phonon interaction
and the true phonon distribution have been duly incorporated. One of
the present authors, with some others have recently obtained such an
expression for the phonon growth rate [8]. Making use of the

expression for ( )∂N
∂t

q from [8] one can obtain
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where E1 is the deformation potential constant, ρ is the density and n,
the electron concentration for the degenerate material is given by

n = 2(2πm*k T )
8π ћ
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e being the Fermi integral, η =e
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x being the normalised phonon wave vector given by x= ћu q
k T

l
B L

,

N =(e −1)q
x −1, a = k T

8m*u T
B L

l2 n
, b = 2m*u

k T
l2

B L
, T =n

T
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e
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, λ = 1 + exp[η −a(x − b) ]e

2 .

The integrals (4)–(6) can be carried out analytically under the

condition
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where xc, the upper limit of the normalised phonon wave vector can
be set at
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Thus one can obtain
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where, P(n,k)= n !
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m =2m+1i ; i is a positive integer which ranges from 1 to 5
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Now
dε

dt
deg

k
→

, the average energy loss rate of the electrons in the

degenerate material due to the phonon emission being known, one can
obtain the non-ohmic mobility μ.

In the presence of an electric field E, the energy supplied to the
carriers is at the rate eμE2. A steady state is reached when the average
energy loss rate due to phonon emission, balances the rate of gain of
energy from the field [1]

μ
dε
dt

=e Ek
→

2

(7)

Thus the non-ohmic mobility of the degenerate semiconductors
under the prevalent conditions of low temperature when the inelastic
interaction of the electrons with the intravalley acoustic phonons and
the full form of the Bose-Einstein distribution for the phonons are duly
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