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A B S T R A C T

Below a threshold magnetic field, domain structures in ferromagnetic samples may start to nucleate from the
initially saturated state via either continuous or discontinuous phase transitions. Such processes are usually
accompanied by the occurrence of soft spin-wave modes at the critical point. In this paper, we present a
theoretical study on the critical phenomena of uniform soft modes in a macrospin model and spatially non-
uniform ones in ferromagnetic thin films. The critical exponents of the mode frequency and its polarization are
derived. The value is found to be equal to one half, which is directly related to the breaking of a reflection-
symmetry in the phase transition. At the critical point, the soft mode becomes linearly polarized, which provides
an additional measurable effect of the critical phenomena.

1. Introduction

Depending on size, shape, material or external field, ferromagnets
can form a wide variety of spin configurations, which are usually called
magnetic domains. Field evolution of the domain structures has been
an important topic in magnetism, due to both fundamental interests
and technical relevance. For instance, the magnetization reversal of
magnetic particles involves subsequent formation of stable or meta-
stable spin configurations. As pointed out in Ref. [1], “a convenient way
to describe their magnetization process is to gather the possible
configurations into micromagnetic phases and determine the related
phase transitions.”

In the past two decades, a great number of studies on magnetization
dynamics in confined magnetic structures have been carried out. Many
of them focused on the collective excitations of the spin system at
various equilibrium states under different external fields. One particu-
larly interesting observation is the softening of certain spin-wave
modes, which occurs when the system undergoes a transition between
different magnetic structures [1–10]. Examples include domain nu-
cleation from saturation in magnetic thin-film strips [1–5], magnetiza-
tion reversal of elliptical nanoparticles [6,7], and vortex formation and
annihilation in various nanostructures [8–14]. All those transitions,
which could be either continuous or discontinuous, were found to be
triggered by soft-mode instability. Therefore, the occurrence of soft
modes can be considered as a direct indication of the phase transitions.
In this paper, we analytically study the critical phenomena of the soft
modes, in both a macrospin model and a discretized model for

ferromagnetic thin films. The critical exponent of the soft mode is
derived to be equal to one half in the case that a reflection-symmetry is
broken in the phase transition. Previous studies focused on the
vanishing of the mode frequency at the critical point. Here we point
out another tightly-related effect, namely, the polarization of the mode
profile (definition given below). In a phase transition that breaks a
reflection symmetry, the associated soft mode becomes linearly polar-
ized with the critical exponent equal to one half as well. The linear
polarization of the soft mode, resulting in the vanishing of one dynamic
component of the magnetization, thus provides a measurable effect
equivalent to the vanishing of the frequency.

The paper is structured in the following manner. The first section
provides a brief introduction of our theoretical approach for solving the
normal modes of a magnetic sample. The second section deals with a
simple case, i.e., the softening of the uniform mode in a macrospin
model. Here we introduce the idea of the mode polarization. In the
third section, we discuss the critical phenomena of the spatially non-
uniform soft modes in ferromagnetic thin films. Finally we summarize
our results.

2. Theoretical method

In our paper, the critical phenomena of the soft modes are
discussed in the framework of the so-called dynamical matrix approach
[15,16], which allows the solution of the normal modes of a magnetic
sample at any given ground state. This method is a discretized form of
solving the linearized equation of motion of the magnetization based on
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the energy formulation. In this approach, the magnetization vector
m⎯→⎯ and the free energy density E of the system are expressed in terms of
its polar angles φ and θas defined in Fig. 1. In the simplest case, the
magnetic sample under consideration can be treated as a single dipole,
or a macrospin. The only normal mode of the system is the uniform
mode, usually referred as the ferromagnetic resonance (FMR) mode,
which is the precessional motion of the magnetization around its
equilibrium orientation ... The deviations from the equilibrium are
indicated by small angles δφ and δθ. Then, the eigen frequency (Ω) and
the eigenvector δφ δθ( , )Tof the resonance mode can be obtained from
the solution of two linear equations [17]:
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whereEαβ are the second derivatives of the total energy with respect to
the polar angles at the equilibrium state, Msis the saturation magne-
tization, and γ the gyromagnetic ratio. In the general case, one has to
solve all the normal modes of a magnetic sample, including also
spatially non-uniform ones. This can be approached by discretizing
the magnetic sample into N equal size, rectangular parallelepipeds
cells. In a chosen reference frame, a particular configuration of the
sample can be described by a vector Φ φ θ φ θ φ θ= { , } = ( , , ⋅⋅⋅, , )n n N N
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where the magnetization in the nth cell is given by
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At the ground state defined by Φ, the normal modes of the
discretized system can be calculated by solving an eigenvalue problem
[15],
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1 1 is a vector consisting
of the small deviations of the polar angles of each cell from its
equilibrium direction. The elements of matrix B are given by
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for k, j=1, ∙∙∙, N[9], which must be evaluated at the equilibrium state Φ.
The solutions of Eq. (3) yield both the frequency of each mode and its
corresponding profile, given by the eigenvector v. In the general case, v
is complex since it contains information on both the amplitude and

relative phase of the precession in each cell, from which the dynamical
precession of each mode can be constructed. Solving Eq. (3) for normal
modes usually requires numerical efforts.

The dynamical matrix approach explicitly associates the normal
modes with the energy formulation of the system. On the other hand, it
is well known that phase transitions are closely related to the energy
behavior near the critical point. Therefore, the dynamical matrix
approach provides a suitable method to analyze the critical phenomena
of the soft modes that induce micromagnetic phase transitions. In the
following section, we first study a macrospin system, which has a
uniform soft mode. This model allows a simple discussion of the critical
phenomena of the soft mode and its connection with the related phase
transition.

3. Soft modes in a macrospin model

We consider a spherical crystal magnetized by a static magnetic
field and focus on the normal excitations of the system during its field
evolution. Suppose the sphere has an uniaxial anisotropy with the easy
direction along the z axis. A static field is applied along the x axis. In a
macrospin model, the sample is treated as a single magnetic dipole,
which is characterized by the direction of its magnetization. Depending
on the external field, the magnetization of the sphere points to different
directions to minimize the total energy of the system, defining the
corresponding equilibrium state. At a given equilibrium, the system has
only one normal mode, i.e., the FMR mode.

The calculation of the mode frequency of this system has been
presented in Ref. [17] as an example of the energy formulation of the
equations of motion. Here we briefly repeat the calculations and make
further analysis. Following Ref. [17], the energy density of the sphere
can be written in terms of polar angles as

E K θ HM θ φ= ′ sin − sin cos ,s1
2 (5)

whereK′1 is a positive anisotropy constant and H is the static field.
The field evolution of the system can be obtained by minimizing the

energy with respect to φ and θ , which yields the equilibrium orientation
at different external fields [17]
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It is clear that the system goes through a continuous phase

transition at a critical field H ≡c
K

M
2 ′

s
1 . Above Hc, the sample is saturated

along the field direction (θ = π
2 ). Just below Hc, the magnetization starts

to deviate from the field direction by an infinitesimal angle δ , which
satisfies δsin( + ) =π H

H2 c
. By a Taylor expansion, one sees that

δ H H∝ −c . One can also make a Taylor expansion of the energy
near the critical point in terms of δfrom θ = π

2 , which reads
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On the right-hand side, the cubic term of δ vanishes due to the
symmetry of the system. It is obvious that if δis defined as the order
parameter, then Eq. (7) resembles the energy formulation near the
critical point in Landau's second order phase transition theory [18,19].

We now turn to the mode frequency of the system, which can be
calculated by requiring the vanishing of the determinant of the
coefficients of δφ and δθ in Eq. (1). The results are given in Ref. [17] as
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This yields the softening of the resonance mode at Hc and the
critical exponent of the mode frequency, which is equal to one half.

Besides the order parameter and the mode frequency as discussed

Fig. 1. Polar angles in a Cartesian coordinate system..
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