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A B S T R A C T

We have developed a quantum noise approach to study the phonon transport through nanostructures. The
nanostructures acting as phonon channels are attached to two phonon reservoirs. And the temperature drop
between the two reservoirs drives the phonon transport through the channels. We have derived a quantum
Langevin equation(QLE) to describe the phonon transport with the quantum noise originated from the thermal
fluctuation of the reservoirs. Within the Markov approximation, the QLE is used to get the thermal conductivity
κ of the nanostructures and the finite size effect of the κ then is studied. In this study, the advantage of the
quantum noise approach lays on the fact that no any local temperature needs to be defined for the
nanostructures in its non-equilibrium state.

1. Introduction

The development of nano technologies scales electronic devices
down to mesoscopic size. Similar to the electrons showing their
peculiar behaviors in the nano-structured devices, thermal transport
in the structures has been confirmed to have finite size effects by
theories and experiments [1–11]. Especially, the thermal conductivity
κ of the structures decreases with the decreasing of the structure size.
Nowadays, study of the finite size effects of the thermal transport has
became an important issue and has a significant application in the
development of nano technologies [6,7]. For these nanostructures
fabricated by dielectric or semiconductor materials, the thermal
transport is through lattice interaction rather than by electrons.
Various methods have been proposed to study the finite size effect of
the thermal transport through the lattice interaction [12–18].
Especially, a quantum Langevin equation (QLE) for the lattice vibration
in the real space has been obtained, where displacements and momenta
of the lattices are used as operators in the equation [6]. In those real
space models, local temperatures have to be defined to describe the
energy flow through the lattices. In order to make the temperature
definition acceptable in the non-equilibrium systems, the assumption
of the coarse-grain-equilibrium(CGE) has to be applied [6,7]. However,
for structures with their scales down to a few nanometers, the CGE is
expected to be invalid. In order to remove the CGE assumption, we
converse the study of the thermal transport in the phonon space, and
develop a version of the quantum Langevin equation for the phonon
transport by using the quantum noise approach. The creation and
annihilation operators of phonons are applied and the quantum noise

is originated from the thermal leads. In this paper, we will show the
details of the development and then study the finite size effects of the κ
by using the equation.

Generally, the nanostructures studied for the thermal transport are
simplified to be an one-dimensional chain with oscillators distributed
uniformly in order [6,7]. Two ends of the nanostructures are attached
to two thermal leads, which are set at two different temperatures
respectively. The drop of temperature between the two leads drives the
thermal flow through the chain by the interactions between the
oscillators. In order to describe the energy of each oscillator for the
thermal flow, local temperatures have to be defined for the oscillators
in such non-equilibrium system. It is well known that the temperature
actually is a thermodynamical concept for equilibrium systems. Thus,
in various models which treat the thermal transport in the real space,
the system is assumed to consist of a large number of coarse grains
with each grain in its own thermodynamic equilibrium even though the
total system is still kept in the non-equilibrium state [6,7]. Such
assumption is called as the coarse-grain-equilibrium (CGE), which is
invalid for the nanostructures due to the non-equilibrium nature of the
coarse grains. However, the CGE assumption can be removed if we
convert the study of the thermal transport into the phonon space.

Phonons have been well accepted as quasi-particles to describe the
lattice vibrations in solids [19]. When the system is in equilibrium
state, phonons are stimulated by the temperature and the Bose-
Einstein distribution can bridge the phonon density and the tempera-
ture. However, in the non-equilibrium cases, it is wrong to define the
phonon density at any particular space position due to the fact that
phonons are extension lattice waves in the whole system. Therefore, it
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is meaningless to define the local temperatures in the non-equilibrium
system when the phonon space is used for the study of the thermal
transport. And then the CGE assumption is removed naturally.

In this study, the two thermal leads are in their own equilibrium
states and are considered as two phonon reservoirs. The Hamiltonian
of the nanostructures can be written in the terms of phonon. The
phonon modes of the nanostructures are discrete and determined by
the structure size of the system [20]. In this way, the finite size effect
then is involved by the discrete phonon modes. By coupling phonons of
the system and phonons of the reservoirs, the temperature drop
between the two reservoirs drives the phonon transport through the
nanostructures. The thermal fluctuation of the reservoirs acts as
quantum noise, which is used to derive the QLE. The QLE has been
developed for electron transport, but it is still lack for the phonon
transport [21–24]. In this work, the phonon version of the QLE is
obtained.

2. Quantum langevin equation

2.1. Hamiltonian

The total Hamiltonian H of the full model consists of two parts
H H H= + I0 . Here, H0 is the Hamiltonian of the full model without the
coupling between the reservoirs and the system. And HI is the
interaction Hamiltonian for the coupling in the model. The H0 and
HI read
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On the right hand side of the H0, the first and the third terms are the
Hamiltonians of the left and right reservoirs respectively, which can be
identified by the superscripts L or R of the phonon frequency ω. The
second term is the Hamiltonian of the system. The annihilation
operators of phonons have been denoted by a, b and c for the left
reservoir, the system and the right reservoir, respectively. The corre-
sponding create operators are then denoted by a+, b+ and c+. The
subscripts in the Hamiltonians represent the phonon modes. On the
right hand side of the HI, ξ is the damping parameter coupling the left
reservoir and the system, and ξp k, is for the coupling between the pth
phonon mode and the kth mode. η is the coupling between the right
reservoir and the system, which has a similar notation of ξ. It should be
noted that the phonon modes of the system are selected by the finite
size effect and take the values of Λ = πl

MD
2 with M the oscillator number

and D the lattice parameter of the system [20]. The l takes only the
integers in the range from − M

2 to M
2
. The finite size effects on the κ then

can be realized through the number M. For the reservoirs, the sizes are
regarded to be infinitely long and the temperatures of the reservoirs are
not influenced by the system during the phonon transport.

2.2. Equation of motion

By using the Heisenberg equation, we get the following equations of
motion directly from the Hamiltonians in eq. (1).
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The dot on the top of the annihilation operators means the time
derivative of the operators. The formal solutions of ap and cq read
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Here, a (0)p and c (0)q are referred to as the operators at the instant
when the coupling between the system and the reservoirs was just
switched on. Multiplying both sides of the equations in eq. (3) by the
damping parameters, we obtain
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Substitute eq. (4) into the equation of ḃk in the eq (2) to get the
equation of motion
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2.3. Markov approximation

For simplicity, we note
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The k and k are the quantum noise induced by the left and right
reservoirs respectively, and act on the kth phonon mode of the system.
The temperatures of the left and the right reservoirs are denoted by TL

and TR respectively. The Bose-Einstein distribution bridges the
phonon densities and the temperatures of the reservoirs by
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For convenience, we use N ω T( , )k to denote the distribution
N ω T( , ) =k e

1
− 1ωk kBT/ in the following derivation. The correlation of

the k then reads
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Since the phonon frequencies of the reservoirs are continuous, the sum
of the frequencies in eq. (8) can be transformed in integral, reading
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The factor of
dD ω

dω

( )p
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p
L in the above equation is the density of state of

phonons. Now we suggest the Markov Approximation by
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Here, γk k
L
, ′ is the coupling strength between the kth and the k′th phonon

modes of the nanostructures. Physically, the γk k
L
, ′ is realized through the

coupling of the system and the left reservoir by ξp k, and ξp k, ′.
Substituting the eq. (10) into the eq. (9), we get the correlation of as
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